BREVET D'INVENTION

<table>
<thead>
<tr>
<th>Référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2661907</td>
<td>N° de publication :</td>
</tr>
<tr>
<td>900604</td>
<td>N° d'enregistrement national :</td>
</tr>
<tr>
<td>C 07 C 49/00, 29/36, 31/00, 45/45, 211/00, 233/00</td>
<td>Int CI' :</td>
</tr>
</tbody>
</table>

PROCEDE DE CONDENSATION CATALYTIQUE D'ACIDES ORGANIQUES ET/OU DE LEURS DERIVES ET SON APPLICATION A LA PREPARATION DE CETONES, ALCOOLS, AMINES ET AMIDES.

Date de dépôt : 14.05.90.

Priorité :

Date de la mise à disposition du public de la demande : 15.11.91 Bulletin 91/46.

Date de la mise à disposition du public du brevet d'invention : 15.04.94 Bulletin 94/15.

Liste des documents cités dans le rapport de recherche :

Se reporter à la fin du présent fascicule

Demandeur(s) : CENTRE DE COOPERATION INTERNATIONALE EN RECHERCHE AGRONOMIQUE POUR LE DEVELOPPEMENT ETABLISSEMENT PUBLIC A CARACTERE INDUSTRIEL ET COMMERCIAL. -FR.

Inventeur(s) : GRAILLE JEAN - PIOCH DANIEL

Titulaire(s) :

Mandataire(s) : CABINET BEAU DE LOMENIE
Procédé de condensation catalytique d'acides organiques et/ou de leurs dérivés et son application à la préparation de cétones, alcools, amines et amides.

La présente invention a essentiellement pour objet un procédé de condensation catalytique d'acides organiques et/ou de leurs dérivés et son application à la préparation de cétones, alcools, amines et amides.

Par "dérivés", on entend désigner ici les esters et sels (ou savons) des métaux alcalins et alcalino-terreux, d'acides organiques.

L'invention trouve notamment application en oléochimie, pour la préparation de cétones, notamment de cétones aliphatiques supérieures utiles dans des domaines variés. Outre les cétones, ce procédé permet également de préparer, par de simples adaptations des conditions réactionnelles, d'autres composés tels que notamment des alcools, amines, amides, thiocétones et thiaoalcools.

Il existe actuellement plusieurs procédés de condensation cétonique d'acides carboxyliques ou de leurs dérivés.

La pyrolyse sous pression réduite des sels de métaux alcalins ou alcalino-terreux des acides carboxyliques est connue depuis très longtemps (C. Friedel, Justus Liebig Ann. Chem., 108, 122-128, (1858)). Cependant, ce procédé est peu sélectif, notamment en série aliphatique et conduit à des sous produits indésirables tels que des hydrocarbures ou des anhydrides d'acides.

C'est pourquoi on s'est orienté vers des procédés de condensation catalytique et de très nombreux composés ont été proposés, en tant que catalyseurs.

Par exemple, le document FR-A-2 038 732 décrit un procédé de préparation de cétones aliphatiques supérieures par cétonisation d'acides gras, en phase vapeur, en présence d'un catalyseur constitué par le dioxyde de zirconium ou un système d'oxydes d'aluminium et de zirconium.

On sait également, notamment par les documents GB-1 074 265 et DE-2 758 113 que la transformation des acides ou des esters en cétones peut être catalysée par le carbonate de
calcium ou par les oxydes de métaux de transition, notamment les oxydes de zirconium et de thorium.

Les catalyseurs connus, actuellement les plus performants, sont des produits de synthèse qui nécessitent donc une élaboration préalable à l'aide de produits chimiques coûteux.

En outre, les procédés utilisés à l'heure actuelle sont généralement spécifiquement adaptés à la transformation d'acides carboxyliques à chaîne aliphatique saturée.

De plus, ils présentent des rendements en produits bruts et des sélectivités en composés cétoniques variables, parfois faibles, ce qui nécessite des étapes ultérieures de purification des produits longues et délicates.

La présente invention a pour but de résoudre le problème technique consistant en la fourniture d'un procédé de condensation catalytique d'acides organiques, notamment carboxyliques et/ou de leurs dérivés utilisant un catalyseur peu coûteux, dont la mise en œuvre est aisée et qui permet d'obtenir de bons rendements en produits bruts et des sélectivités élevées, quel que soit l'acide devant être transformé.

La solution, conforme à la présente invention, pour résoudre ce problème technique consiste en un procédé du type précité, caractérisé en ce qu'il consiste à utiliser un catalyseur à base de composé minéral d'origine naturelle, constitué essentiellement par un mélange d'oxydes et/ou d'hydroxydes de fer et d'aluminium, et éventuellement d'oxydes et/ou d'hydroxydes de silicium et de titane et/ou d'un ou plusieurs composés métalliques choisis parmi Cr, Ca, Co, Cu, Zn, Mg, Mn, K, Na, Pb, Ni, comme par exemple un minerai de type latérite ou bauxite.

L'expression "constitué essentiellement" signifie que les composés du fer et de l'aluminium présents dans le minerai représentent au moins environ 50 %, et de préférence au moins 65 % en poids, du poids du composé minéral d'origine naturelle calciné à 600°C.

Dans le cas actuellement préféré où le composé minéral est une bauxite, les composés de fer, d'aluminium, de silicium et
de titane représentent de préférence d'environ 90 à environ 100 % en poids du poids dudit composé minéral calciné à 600°C.

De préférence, on utilise une bauxite riche en fer, comportant au moins environ 8 % en poids de composés du fer.

Il a été découvert, de façon tout à fait surprenante et inattendue que certains minéraux extraits du sol ou du sous-sol, comme les bauxites et les latérites constituent des catalyseurs remarquables pour la réaction de condensation des acides organiques, et notamment carboxyliques. Le faible coût de ces minéraux représente un avantage essentiel pour la transformation industrielle par condensation des acides organiques.

Il convient de remarquer que si les propriétés catalytiques d'autres minéraux naturels, comme par exemple les zéolithes ou les argiles ont fait l'objet d'investigations poussées depuis de nombreuses années, il n'en est pas de même pour les bauxites et les latérites.

Certes, certaines propriétés catalytiques de la bauxite ont déjà été mises à profit dans le domaine du raffinage du pétrole brut. Cependant, dans ce cas, le catalyseur traite essentiellement les hydrocarbures.

Contrairement, le procédé conforme à la présente invention vise des composés comportant un ou plusieurs hétéroatomes et généralement au moins deux hétéroatomes par molécule. Or, il est bien connu que la présence d'hétéroatomes comme l'oxygène, le soufre, l'azote ou le phosphore est un facteur d'empoisonnement des catalyseurs et limite souvent leur domaine d'utilisation ainsi que leur intérêt économique.

Ainsi, il n'était pas évident pour l'homme de l'art, d'une part, que les catalyseurs dérivés de latérite et de bauxite possèdent des propriétés catalytiques intéressantes en synthèse organique, et d'autre part, que ces catalyseurs ne soient pas rapidement désactivés par la présence d'hétéroatomes dans une proportion aussi élevée.

Selon une caractéristique particulière du procédé conforme à l'invention, le catalyseur utilisé est obtenu par activation, notamment par calcination, du composé minéral.
Plus précisément, ce catalyseur est élaboré par broyage du composé minéral solide, tamisage, lavage à l'eau, séchage et calcination par les méthodes habituelles bien connues de l'homme du métier. La calcination a pour but de déshydrater le solide afin de créer des sites actifs possédant des propriétés acido-basiques, d'ajuster et de stabiliser la force des groupements électrono-donateurs et électroaccepteurs, responsables de l'activité catalytique.

Afin d'améliorer les performances catalytiques du catalyseur, l'étape de calcination peut être précédée d'une lixiviation du solide par des solutions d'acides ou de bases minérales. Cette opération a pour but d'éliminer une partie des composés métalliques qui constituent la surface interne du solide poreux, et donc de modifier les propriétés électroniques de cette surface et, par voie de conséquence, l'activité catalytique.

Par ailleurs, l'activité et la sélectivité du catalyseur peuvent être ajustées ou même modifiées par l'apport de métaux ou de composés métalliques à la surface du solide. Il est également possible de soumettre ce catalyseur à des traitements oxydants (oxygène, gaz soufrés) ou réducteurs (hydrogène, amines). Ces divers ajustements et modifications peuvent très facilement être déterminés par l'homme de métier, selon l'objectif fixé.

Le procédé conforme à la présente invention peut être appliqué avantageusement aux acides carboxyliques mais permet également de condenser d'autres acides organiques comme par exemple les monosulfates d'alkyle, les acides sulfoniques, phosphoniques et leurs dérivés.

A titre d'exemple, ce procédé peut être appliqué aux acides carboxyliques possédant au moins deux atomes de carbone, qu'ils soient d'origine naturelle comme par exemple les acides gras ou synthétiques, tels les produits d'oxydation des paraffines pétrolières.

On peut également transformer des composés polyfonctionnels comme par exemple les acides gras insaturés, les diacides, les hydroxyacides ainsi que leurs esters, notamment méthyliques ou éthylques ou des esters de polyols comme par exemple les triglycérides, les anhydrides et les sels.
La condensation catalytique d'acides organiques conduit généralement à des cétones qui peuvent être symétriques dans le cas où les molécules d'acides sont identiques, ou non symétriques dans le cas où les molécules d'acides sont différentes. Par exemple, on peut obtenir une cétonne symétrique (RCOR) à partir d'acides gras (RCO₂H) et une cétonne non symétrique à partir d'un mélange d'un acide gras (RCO₂H) et d'anhydride acétique (CH₃COOCOCH₃).

D'une façon générale, le procédé conforme à l'invention peut être appliqué à la préparation de composés hétéroatomiques variés, comme les alcools, amines, amides, thiocétones, thialcools, selon que le produit à transformer est un produit pur ou un mélange et que l'atmosphère sous laquelle la réaction est effectuée est neutre ou rendue oxydante ou réductrice par l'utilisation d'un agent additionnel. Un tel agent peut être par exemple l'hydrogène, l'ammoniac ou une amine à faible condensation en carbone.

Le procédé conforme à l'invention permet donc d'obtenir des produits très divers aux propriétés physico-chimiques variées. Ainsi, à partir d'acide acétique, on peut obtenir de l'acétone, qui est un solvant organique hydrophile. À l'opposé, à partir d'acide stéarique, on peut obtenir la stéarone, qui est hydrophobe et possède un point de fusion relativement élevé.

Pour illustrer cet aspect avantageux de l'invention, on a regroupé au tableau I ci-après les propriétés de trois cétones différentes susceptibles d'être obtenues par la mise en œuvre du procédé de condensation conforme à l'invention.
TABLEAU I

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Produit</th>
<th>Poids moléculaire (g)</th>
<th>Temp. de fusion, °C</th>
<th>Temp. d'ébullition °C sous mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acide carboxylique</td>
<td>Cétone</td>
<td>2-propanone ou acétone CH₃-CO-CH₂</td>
<td>58</td>
<td>-95</td>
</tr>
<tr>
<td>Acide acétique</td>
<td></td>
<td>CH₃-COOH</td>
<td>9-heptadécanone ou pétargone [CH₃(CH₂)₇-CO]</td>
<td>254</td>
</tr>
<tr>
<td>Acide pélargonique</td>
<td></td>
<td>CH₃(CH₂)₇-COOH</td>
<td>18-pentatriacontane ou stéarine [CH₃(CH₂)₁₆-CO]</td>
<td>507</td>
</tr>
<tr>
<td>Acide stéarique</td>
<td></td>
<td>CH₃(CH₂)₁₆-COOH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le procédé conforme à l'invention peut être mis en œuvre dans une installation traditionnelle de condensation catalytique d'acides organiques en phase vapeur.

Avantageusement, l'acide à transformer sera injecté de façon continue en tête d'un réacteur tubulaire vertical contenant le calyseur. Eventuellement, cet acide sera préchauffé à une température supérieure à sa température de fusion.

Le lit catalytique peut être également surmonté d'un garnissage destiné à ce préchauffage.

À titre d'exemple, dans le cas de la condensation cétonique d'acides carboxyliques, la réaction peut être effectuée à une température comprise entre environ 250 et 450°C, de préférence entre environ 340 et 380°C.

Le débit volumique en acide peut atteindre 2 h⁻¹ (2 ml d'acide par ml de catalyseur et par heure). Ce débit doit être adapté à la nature de l'acide à transformer et se situe généralement entre 0,5 et 1 h⁻¹.

Les effluents sont condensés et recueillis dans un réservoir situé immédiatement sous le réacteur et porté à une
température convenable qui permet de maintenir les produits à l'état liquide tout en évitant de condenser l'eau, co-produit de la réaction. L'eau est généralement entraînée hors du réservoir par les oxydes de carbone qui sont également des co-produits de la réaction.

Le condensat peut être traité à l'aide d'une solution aqueuse d'hydroxyde de sodium, puis lavé à l'eau si son acidité est élevée. Le condensat ainsi traité peut être aussi recristallisé dans l'éthanol afin d'éliminer les dernières traces d'impuretés, en particulier les hydrocarbures et les composés colorés.

Bien entendu, si l'on souhaite obtenir des produits de pureté très élevée, il peut être nécessaire de réaliser une opération complémentaire de distillation sous pression réduite.

D'une façon générale, les acides carboxyliques purs conduisent, par condensation catalytique, à un seul composé cétonique, alors que les mélanges d'acides conduisent à des mélanges de cétones.

Les sous-produits, généralement obtenus en très faibles proportions (inférieures à environ 5%) sont presque exclusivement des hydrocarbures.

Il convient encore de noter qu'après une utilisation prolongée du catalyseur, qui conduit à sa désactivation partielle, l'activité et la sélectivité initiale peuvent être restaurées par simple réactivation, in situ, dans un courant d'air à une température supérieure à 350°C, de préférence comprise entre 450 et 600°C.

Selon un deuxième aspect, la présente invention vise à couvrir un procédé de préparation d'un catalyseur destiné à la condensation d'acides organiques, notamment carboxyliques et/ou de leurs dérivés, caractérisé en ce qu'il comprend l'activation par calcination d'un composé minéral d'origine naturelle constitué essentiellement par un mélange d'oxydes et/ou d'hydroxydes de fer et d'aluminium, et éventuellement d'oxydes et/ou d'hydroxydes de silicium et de titane et/ou d'au moins un composé métallique choisi parmi le groupe constitué de Cr, Ca, Cu, Co, Zn, Mg, Mn, K, Na, Pb, Ni, comme par exemple un minerai de type latérite ou bauxite.
Enfin, selon un troisième aspect, la présente invention vise à couvrir l'utilisation d'un composé minéral d'origine naturelle tel que défini précédemment, pour la fabrication d'un catalyseur destiné à la condensation d'acides organiques, notamment carboxyliques et/ou de leurs dérivés.

D'autres buts, caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture des exemples illustratifs données ci-après, qui ne sauraient limiter la portée de l'invention.

Exemple 1 : Préparation du catalyseur

On a préparé un catalyseur à partir d'une bauxite dont la composition en poids est la suivante.

Composés :
- du fer (par exemple Fe\(_2\)O\(_3\), FeO) 31 %
- de l'aluminium (par exemple Al\(_2\)O\(_3\)) 38 %
- du silicium (par exemple SiO\(_2\)) 12 %
- du titane (par exemple TiO\(_2\)) 2 %
- du chrome 0,15 %
- du calcium 0,1 %
- du magnésium 0,06 %
- du nickel 0,01 %
- du manganèse 0,01 %
- du potassium et du sodium 0,01 %
- du cobalt 0,007 %
- du zinc 0,006 %
- du cuivre 0,003 %
- du plomb 0,002 %
- eau 15 %

La bauxite est concassée grossièrement à l'aide d'un marteau puis broyée plus finement jusqu'à une taille moyenne de particules inférieure à un millimètre. La bauxite est ensuite tamisée à l'aide de deux tamis superposés de dimensions de maille 0,05 et 0,5 mm et la fraction retenue par le tamis inférieur de
granulométrie comprise entre 0,05 et 0,5 mm est introduite dans un erlenmeyer rempli d'eau déminéralisée. Le volume de l'eau est égal à environ 5 fois le volume de la bauxite. Le contenu de l'erlenmeyer est agité modérément puis laissé décanter et l'eau est finalement séparée par simple égouttage. Cette opération qui a pour but d'éliminer les particules fines pouvant endommager le réacteur est répétée une fois.

L'eau extraparticulaire du solide est laissée évaporer à la température ambienne, puis le séchage est poursuivi à 100°C dans une étuve ventilée pendant 12 h. La calcination est effectuée juste avant la condensation cétonique dans le réacteur lui-même à 600°C pendant deux heures sous courant d'air de 100 ml/min, sur un volume de catalyseur de 15 ml. La calcination constitue l'étape d'activation du solide qui possède alors les propriétés catalytiques requises.

La composition pondérale du catalyseur ainsi activé pour les quatre principaux constituants est alors la suivante : Fe$_2$O$_3$ 36 % ; Al$_2$O$_3$ 45 % ; SiO$_2$ 14 % ; TiO$_2$ 2,2 %. Il possède une surface spécifique de l'ordre de 65 m2/g.

Exemple 2

Un volume de 82 ml (69,5 g ; 0,35 mole) d'acide laurique pur est injecté dans un réacteur porté à 380°C, avec un débit volumique de 0,80 h$^{-1}$.

Le réacteur est un tube vertical en silice fondue de diamètre intérieur de 26 mm, équipé d'un "doigt de gant" destiné à recevoir un thermocouple pour mesurer la température du lit catalytique. Ce dernier mesure environ 28 mm de hauteur ; il est retenu à sa base par un fritté (porosité 0) et est surmonté d'un lit de billes de silice fondue de 40 mm de hauteur destiné au préchauffage du substrat à transformer.

Le réacteur, placé dans un four tubulaire thermorégulé, est obturé à sa partie supérieure par un bouchon équipé de deux tubes. Ces derniers permettent respectivement l'introduction d'un gaz (air pour la calcination par exemple) et l'introduction du
substrat au moyen d'une pompe. La partie inférieure du réacteur est reliée à un condenseur constitué par un réfrigérant et un ballon récepteur. Le condenseur est maintenu à 80 °C par circulation d'eau chaude dans une double enveloppe et le ballon récepteur est relié à l'évent afin d'éliminer les gaz produits par la réaction de condensation (dioxyde de carbone et vapeur d'eau par exemple).

Le condensat liquide jaune paille à 80 °C ne présente pas de phase aqueuse. Il pèse 54 g, ce qui représente un rendement en laurone de 92 % par rapport au rendement théorique.

L'analyse chromatographique en phase gazeuse du condensat brut donne la composition centésimale pondérale suivante : laurone 97 ; acide laurique 0,6 ; n-undécane 0,2 ; autres 2,2.

La laurone brute ainsi obtenue possède donc une pureté élevée et pourrait être utilisée telle quelle pour des applications industrielles.

Un test catalytique préalable effectué avec le réacteur contenant un volume de 15 ml de billes de quartz en remplacement du catalyseur a conduit dans les conditions ci-dessus à une phase organique condensée exempte de cétones essentiellement constituée par de l'acide laurique et par une faible proportion d'hydrocarbures.

Exemple 3

Le lit catalytique précédemment utilisé dans l'exemple 2, traversé par un courant d'air de 60 ml/min, est porté à 600 °C pendant 3 h. À la fin de l'opération, le catalyseur est porté à 380 °C et 27 ml (23 g ; 0,11 mole) d'acide laurique sont injectés en tête de réacteur avec un débit volumique de 0,80 h⁻¹.

La composition centésimale pondérale du condensat est alors la suivante : laurone 98,5 ; acide laurique 0,1 ; n-undécane 0,3 ; autres 1,1.

On constate que l'activité et la sélectivité du catalyseur restent inchangées après avoir transformé près de 7 fois son volume de substrat.
Exemple 4

Un volume de 18 ml (15,6 g ; 0,13 mole) d'acide caproïque pur est injecté dans le réacteur porté à 370°C avec un débit volumique de 0,90 h⁻¹.

La composition centésimale pondérale de la phase organique brute condensée est la suivante : di n-pentylcétone 91 % ; acide caproïque 4 % ; autres 5 %.

Exemple 5

Un volume de 31 ml (38 g ; 0,13 mole) d'un mélange d'acides gras composé principalement de 90 % d'acide stéarique et 9 % d'acide palmitique est injecté avec un débit volumique de 1,05 h⁻¹ dans le réacteur porté à 385°C.

La composition du condensat est la suivante : C₃₅H₇₀ 67 % ; C₃₃H₆₆ 14 % ; C₃₁H₆₂ 1 % ; acides gras 7 % ; hydrocarbures 8 % ; autres 3 %.

Exemple 6

La phase organique condensée lors du passage de 16 ml (17,9 g ; 0,11 mole) de monoadipeate de méthyle sur le catalyseur porté à 350°C avec un débit volumique de 0,4 h⁻¹ contient 79 % de cyclopentanone, ce qui correspond à un rendement de 85 % par rapport au rendement théorique.

Exemple 7

La phase organique condensée lors du passage de 18 ml (8,4 g) d'un mélange d'acide laurique (0,02 mole) et d'anhydride acétique (0,04 mole) (1/1 en poids) injecté avec un débit volumique de 0,5 h⁻¹ dans le réacteur à 350°C, contient après lavage à l'eau 88 % de méthyl n-undécycténone ; 5 % d'acide laurique ; 5 % de laurone.

D'autres essais, dont les résultats ne sont pas rapportés ici, ont été réalisés avec les bauxites et latérites de compositions variées. Dans le cas des bauxites, il semble qu'une teneur relativement élevée en composés de fer, d'au moins environ 8 % en
poids, et de préférence d'environ 30 %, soit un facteur influençant favorablement le procédé conforme à l'invention.

Le procédé de condensation d'acides organiques qui vient d'être décrit et exemplifié présente de nombreux avantages tant sur le plan technique qu'économique, que l'on peut résumer comme suit :
- origine naturelle du catalyseur ;
- faible coût de ce catalyseur ;
- méthode très simple d'activation et de réactivation du catalyseur ;
- température du lit catalytique modérée pour ce type de réaction ;
- activité élevée du catalyseur ;
- possibilité d'application du procédé sur une large gamme d'acides organiques ;
- sélectivité élevée en produits de condensation hétéroatomiques (très faible taux de sous-produits) ;
- produit brut généralement peu coloré ;
- possibilité d'utiliser les produits obtenus, à l'échelle industrielle, sans purification préalable.
1. Procédé de condensation catalytique d'acides organiques, notamment carboxyliques et/ou de leurs dérivés, caractérisé en ce qu'il consiste à utiliser un catalyseur à base de bauxite riche en fer, comportant au moins 8 % en poids d'oxydes et/ou d'hydroxydes de fer.

2. Procédé selon la revendication 1, caractérisé en ce que le catalyseur précité est obtenu par activation, notamment par calcination, de la bauxite riche en fer précitée.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les acides organiques précités sont des acides carboxyliques aliphatiques saturés.

4. Procédé selon l'une des revendications 1 à 3, pour la préparation de cétones, alcools, amines, amides, thiocétones, et thioalcools.

5. Procédé pour la préparation d'un catalyseur destiné à la condensation d'acides organiques, notamment carboxyliques et/ou de leurs dérivés, caractérisé en ce qu'il comprend l'activation par calcination d'une bauxite riche en fer comportant au moins 8 % en poids d'oxydes et/ou d'hydroxydes de fer.

6. Procédé selon la revendication 5, caractérisé en ce que l'activation précitée comprend le broyage de la bauxite, le tamisage, le lavage à l'eau, le séchage et la calcination.

7. Procédé selon la revendication 5 ou 6, caractérisé en ce que préalablement à la calcination, on effectue une lixiviation de la bauxite solide par une solution d'acides ou de bases minérales.

8. Utilisation d'une bauxite riche en fer, comportant au moins 8 % en poids d'oxydes et/ou d'hydroxydes de fer, pour la préparation d'un catalyseur destiné à la condensation d'acides organiques, notamment carboxyliques et/ou de leurs dérivés.
Rapport de Recherche

Articles L.612-14 et L.612-17 du code de la propriété intellectuelle;
articles 40 à 53 du décret n° 79-822 du 19 septembre 1979 modifié

Objet du Rapport de Recherche

Après l’accomplissement de la procédure prévue par les textes rappelés ci-dessus, le brevet est délivré. L’Institut National de la Propriété Industrielle n’est pas habilité, sauf dans le cas d’absence manifeste de nouveauté, à en refuser la délivrance. La validité d’un brevet relève exclusivement de l’appréciation des tribunaux.

L’I.N.P.I. doit toutefois annexer à chaque brevet un "RAPPORT DE RECHERCHE" citant les éléments de l’état de la technique qui peuvent être pris en considération pour apprécier la brevetabilité de l’invention. Ce rapport porte sur les revendications figurant au brevet qui définissent l’objet de l’invention et délimitent l’étendue de la protection.

Après délivrance, l’I.N.P.I. peut, à la requête de toute personne intéressée, formuler un "AVIS DOCUMENTAIRE" sur la base des documents cités dans ce rapport de recherche et de tout autre document que le requérant souhaite voir prendre en considération.

Conditions d’établissement du présent Rapport de Recherche

☒ Le demandeur a présenté des observations en réponse au rapport de recherche préliminaire.
☐ Le demandeur a maintenu les revendications.
☒ Le demandeur a modifié les revendications.
☐ Le demandeur a modifié la description pour en éliminer les éléments qui n’étaient plus en concordance avec les nouvelles revendications.
☐ Les tiers ont présenté des observations après publication du rapport de recherche préliminaire.
☐ Un rapport de recherche préliminaire complémentaire a été établi.

Documents cités dans le présent Rapport de Recherche

La répartition des documents entre les rubriques 1, 2 et 3 tient compte, le cas échéant, des revendications déposées en dernier lieu et/ou des observations présentées.

☒ Les documents énumérés à la rubrique 1 ci-après sont susceptibles d’être pris en considération pour apprécier la brevetabilité de l’invention.
☒ Les documents énumérés à la rubrique 2 ci-après illustrent l’arrière-plan technologique général.
☐ Les documents énumérés à la rubrique 3 ci-après ont été cités en cours de procédure, mais leur pertinence dépend de la validité des priorités revendiquées.
☐ Aucun document n’a été cité en cours de procédure.
1. ÉLÉMENTS DE L'ÉTAT DE LA TECHNIQUE SUSCEPTIBLES D'ÊTRE PRIS EN CONSIDÉRATION POUR APPRÉCIER LA BREVETABILITÉ DE L'INVENTION

<table>
<thead>
<tr>
<th>Référence des documents (avec indication, le cas échéant, des parties pertinentes)</th>
<th>Revendications du brevet concernées</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-A-1 988 021 (O. SCHMIDT et al.) * revendication 1 ; exemple 2 *</td>
<td>1, 2, 4</td>
</tr>
</tbody>
</table>
2. ÉLÉMENTS DE L'ÉTAT DE LA TECHNIQUE ILLUSTRANT
L'ARRÎÈRE-PLAN TECHNOLOGIQUE GÉNÉRAL

-DE-B-1 768 136 (BASF)

3. ÉLÉMENTS DE L'ÉTAT DE LA TECHNIQUE
DONT LA PERTINENCE DÉPEND DE LA VALIDITÉ DES PRIORITÉS

<table>
<thead>
<tr>
<th>Référence des documents</th>
<th>Revendic和平s du brevet concernées</th>
</tr>
</thead>
<tbody>
<tr>
<td>(avec indication, le cas échéant, des parties pertinentes)</td>
<td></td>
</tr>
</tbody>
</table>

NEANT