BREVET D'INVENTION

PROCEDE DE PREPARATION DE PRODUITS LAITIERS A TENEUR REDUITE EN STEROLS, NOTA- TAMMENT EN CHOLESTEROL

Date de dépôt : 12.07.89.
Priorité :

Date de la mise à disposition du public de la demande : 18.01.91 Bulletin 91/03.
Date de la mise à disposition du public du brevet d'invention : 31.10.91 Bulletin 91/44.

Liste des documents cités dans le rapport de recherche :

Se reporter à la fin du présent fascicule

Références à d'autres documents nationaux apparentés :

Demandeur(s) : ROQUETTE FRERES, Société anonyme. -FR.

Inventeur(s) : JEAN GRAILLE - DANIEL PIOCH - MICHEL SERPELLONI - LEON MENTINK

Titulaire(s) :

Mandataire(s) : CABINET PLASEREAUD
La présente invention a trait à un procédé de préparation de produits laitiers à teneur réduite en stérols, notamment en cholestérol.

Les produits de départ utilisés dans le procédé conforme à l'invention sont des émulsions huile dans eau comprenant des matières grasses d'origine laitière comme par exemple le lait ou la crème. Le lait est un liquide sécrété par les glandes mammaires de femelles mammifères. Il est composé de cinq constituants majeurs:
- les lipides essentiellement sous forme de triglycérides,
- les protéines,
- les glucides,
- les sels,
- et l'eau.

La crème est en fait un lait enrichi en matière grasse par écrémage spontané ou centrifuge. Elle contient donc les mêmes éléments majeurs que le lait mais dans des proportions différentes.

Ces deux produits comprennent également des constituants présents en quantités très minimes comme les lécithines, les vitamines, les enzymes, les gaz dissous, les acides gras présents naturellement dans le lait et/ou issus de l'hydrolyse des triglycérides, et les stérols. Ces derniers sont essentiellement représentés par le cholestérol à hauteur de 98% et sont des substances associées à la matière grasse. La graisse du lait de vache contient environ 0,3% de cholestérol soit 0,1 g par litre de lait.

Or, il a été établi depuis fort longtemps que les taux sanguins élevés de cholestérol (cholestérol LDL) sont en corrélation directe avec des maladies cardio-vasculaires graves.
Le principe d'entre elles est l'athérosclérose qui se traduit par l'altération de la paroi des artères et dont l'une des causes est le dépôt localisé, excessif et anormal de cholestérol sur la face interne de la paroi d'une artère. L'athérome ainsi formé peut avoir des conséquences tragiques comme l'infarctus du myocarde. À titre illustratif, on peut indiquer qu'une diminution de 1% du cholestérol sanguin total entraîne une diminution de 2% du risque coronarien. L'excès de cholestérol peut également être à l'origine de calculs biliaires.

La prévention demeure l'un des moyens les plus efficaces pour remédier à ces pathologies. Elle peut consister à diminuer autant que possible l'ingestion d'aliments riches en cholestérol ou bien encore à consommer des denrées à teneur réduite en cholestérol.

L'un des soucis des industriels de l'alimentaire est donc d'éliminer le cholestérol des produits de consommation courante et notamment des produits laitiers.

Ainsi, il a déjà été proposé diverses méthodes d'extraction des stérols des graisses.

L'une d'elles consiste à mettre en contact la matière grasse d'origine animale avec de la digitonine qui a la propriété de réagir avec le cholestérol pour donner un précipité. Les performances et les résultats de cette méthode ne sont pas satisfaisants du fait de la difficulté de séparation du précipité du milieu. Cette méthode est, en tout état de cause, inapplicable industriellement.

Le cholestérol peut également être extrait des matières grasses par entraînement à l'aide d'un solvant. L'inconvénient majeur de ce procédé est que les solvants généralement employés sont toxiques et qu'il en reste toujours des traces dans les matières grasses considérées.

On connaît également des procédés de microdistillation, inapplicables au niveau industriel, ou bien encore d'adsorption sur colonnes, comme il est décrit par exemple dans les demandes de brevet européen EP n° 0 174 848 et EP
n° 0 318 326. Ces demandes enseignent un procédé suivant lequel la matière grasse maintenue à l'état liquide passe au travers d'une colonne d'adsorbant, en l'occurrence du charbon actif. Il est clair qu'un tel procédé est très lourd à mettre en œuvre et, de surcroît, l'extraction qu'il permet n'est pas très sélective.

Un autre procédé physico-chimique d'extraction du cholestérol des graisses est divulgué par la demande de brevet japonais JP n° 59/140299. Elle consiste à mettre en contact une matière sèche chargée en cholestérol telle que de la poudre de lait, avec du CO₂ supercritique à une température comprise entre 35 et 45°C et à une pression comprise entre 130 et 200 atm. L'obtention de ces conditions physiques nécessite l'emploi d'un matériel complexe et onéreux. La conduite du procédé en est ainsi très délicate. De plus, comme il est précisé dans la demande de brevet, d'autres composés lipidiques sont entraînés par le CO₂ supercritique. Ce procédé n'est donc pas sélectif.

Pour éliminer les stérols des graisses, il a été également imaginé un procédé de biodégradation desdits stérols divulgué par la demande de brevet EP n° 0 278 794 et mettant en oeuvre des bactéries qui, mises au contact de la matière grasse, sont aptes à métaboliser au moins l'un des stérols qu'elle contient. Comme tous les procédés faisant intervenir des fermentations, ce procédé de biodégradation est très délicat à conduire du fait de la variabilité inhérente à la matière vivante. De plus, les matériaux employés, la durée relativement longue sont, entre autres, des éléments qui rendent un tel procédé onéreux. Enfin, les catabolites produits lors de ces fermentations restent à ce jour totalement inconnus sur le plan de leur nature et de leur toxicité, et sont, de toute façon, présents dans la matière grasse ainsi traitée.

On connaît aussi, par la demande de brevet européen EP n° 0 256 911, un procédé d'élimination du cholestérol contenu dans une matière grasse d'origine animale.
Il est basé sur la propriété déjà mise à jour qu'ont les cyclodextrines-polyglucoses cycliques de conformation tubulaire tronconique à 6, 7 ou 8 motifs glucose et désignées respectivement par alpha, bêta ou gamma - de recevoir dans leur cavité centrale hydrophobe des molécules de stérols et notamment de cholestérol, pour former des complexes d'inclusion solubles dans l'eau. Selon ce procédé, la matière grasse maintenue fluide est mise en contact avec une cyclodextrine sous agitation pendant 30 minutes à 10 heures de façon à permettre la formation de complexes. La séparation de ces derniers est ensuite réalisée par introduction dans le milieu réactionnel, d'eau qui solubilise ces complexes. La solution aqueuse ainsi obtenue est ensuite recueillie après décantation.

Le rendement d'extraction du cholestérol par ce procédé est peu important. Dans le meilleur des cas, il n'est en effet que de 41%, et ce après trois extractions successives, comme il est indiqué dans l'exemple 3 de la description de cette demande de brevet européen.

Il est à noter que, selon ce procédé, la matière grasse doit être maintenue en fusion sous une atmosphère exempte d'oxygène. Ces caractéristiques techniques impliquent le recours à un appareillage spécifique de maintien en température et d'alimentation en gaz neutre. Enfin, la durée nécessaire uniquement pour la première phase de complexation est au minimum de 30 minutes et en réalité de 2 à 3 heures comme indiqué dans les exemples. Ce procédé est donc nécessairement coûteux en temps, en matériel et en énergie.

Hormis ces performances peu satisfaisantes, ce procédé constitue une succession d'étapes supplémentaires dans la fabrication d'un produit alimentaire et s'intègre dans une démarche industrielle quelque peu irrationnelle. En effet, il consiste tout d'abord à fabriquer la matière grasse sous une forme anhydre, à lui faire subir le traitement lourd d'extraction de cholestérol, puis à l'amener
vers un état approprié dans lequel elle pourra être utilisable dans un procédé d'obtention de produits alimentaires. Dans le cas d'une matière grasse laitière, ces produits alimentaires peuvent être des laits de consommation reconstitués, des yaourts, des fromages ou autres. Il est clair qu'un tel schéma n'est pas acceptable sur le plan de la rentabilité industrielle.

Il ressort de ce qui précède qu'aucune des solutions de l'art antérieur n'a permis jusqu'à maintenant de produire des matières grasses alimentaires appauvries en stérols - notamment en cholestérol - de manière satisfaisante, c'est-à-dire répondant aux conditions industrielles de rentabilité économique, de souplesse d'utilisation, et de qualité des produits finaux.

De plus, au regard de cette qualité des produits finaux obtenus par mise en œuvre des procédés connus, il est important d'observer que ces produits, comme toute matière grasse laitière, sont susceptibles de s'oxyder et de rancir, ce qui les rend impropre à la consommation. En effet, la matière grasse laitière comprend des composés insaturés réagissant très facilement avec l'oxygène de l'air. C'est la raison pour laquelle, dans le procédé décrit dans la demande de brevet EP n° 0 256 911 mentionnée ci-dessus, il est prévu de travailler sous azote. Mais il n'en demeure pas moins que les produits ainsi traités restent très fortement sujets au rancissement, ce qui porte inévitablement atteinte à leur valeur alimentaire.

L'un des objectifs essentiels de la présente invention est donc de remédier aux inconvénients de l'art antérieur précité en proposant un procédé de préparation de produits laitiers à teneur réduite en stérols et notamment en cholestérol. Par conséquent, il ne s'agit plus d'extraire les stérols de produits intermédiaires que sont les matières grasses d'origine animale, mais en revanche d'intégrer l'élimination de stérols dans la chaîne d'obtention de produits laitiers.
Cette reformulation du problème technique, même si elle semble a priori plus logique, ne s'imposait pas à l'évidence du fait de l'existence d'un certain nombre d'obstacles et de préjugés techniques qui n'ont jamais été surmontés malgré la connaissance déjà ancienne des problèmes liés au cholestérol alimentaire.

En premier lieu, il faut savoir que les émulsions huile dans eau laitières comme le lait et la crème sont des milieux hétérogènes et complexes constitués par des suspensions colloïdales de particules (globules de matière grasse et micelles protéiques) dans une phase aqueuse dispersante. Le cholestérol ne représente qu'un constituant mineur parmi de nombreuses autres substances libres telles que les protéines ou les acides gras. En outre, il est intégré dans la structure membranaire des globules gras. Il est donc a priori non directement accessible. Sachant cela, il était raisonnable d'en conclure que la cyclo- dextrine mise en contact d'un tel milieu n'aurait aucune affinité particulière pour le cholestérol du fait de la compétition importante existant entre les composés du milieu vis-à-vis de la cycloextrine, et de la situation du cholestérol dans les membranes des globules gras.

En second lieu, même dans l'hypothèse suivant laquelle la cycloextrine complexerait le cholestérol, on pouvait craindre l'apparition d'un phénomène d'inversion d'émulsion du fait du rôle connu du cholestérol dans la stabilisation de la structure membranaire des globules gras constituant l'émulsion huile dans eau. Or, il est évident qu'un milieu laitier ayant subi une inversion d'émulsion n'est plus une matière première de base convenable pour la fabrication de nombreux produits laitiers. Pour l'exploiter, il serait donc indispensable de la retraire en recourant par exemple à des émusifiants exogènes. On retrouverait là les travers des procédés connus.

En troisième lieu, il est indiqué dans un ouvrage
de référence ("Science du lait", Charles ALAIS, page 102) que le cholestérol a également un rôle d'inhibiteur des lipases à l'origine du rancissement des émulsions huile dans eau laitières. Cela constitue, là encore, un frein à l'idée de l'extraction du cholestérol de tels milieux.

En allant à l'encontre de tous ces préjugés techniques, la Demanderesse a fait preuve d'une démarche inventive en mettant au point le procédé conforme à l'invention.

Aussi, c'est seulement après avoir mené toute une série d'études et d'essais, que la Demanderesse a mis en évidence, de façon tout à fait surprenante et inattendue, le fait suivant lequel il était possible de préparer des produits laitiers à teneur réduite en stérols, notamment en cholestérol, en mettant en contact une émulsion huile dans eau comprenant des matières grasses d'origine laitière, avec de la cyclodextrine en quantité suffisante pour former des complexes d'inclusion avec les stérols de telle sorte que ces derniers puissent être extraits de la matière grasse, et, de façon simultanée ou non, à séparer lesdits complexes du milieu sans inverser l'émulsion huile dans eau de départ en émulsion eau dans huile.

Il est tout d'abord apparu que, dans les conditions du procédé, la cyclodextrine avait une affinité sélective remarquable vis-à-vis du cholestérol présent à la surface des globules gras contenus dans une émulsion huile dans eau laitière.

On a constaté également que l'émulsion huile dans eau de départ n'était pas inversée en émulsion eau dans huile, et ce malgré l'élimination du cholestérol, qui est pourtant supposé être un agent important dans la stabilité physique de l'émulsion, en raison de son rôle tensioactif.

Par ailleurs, dans le procédé conforme à la présente invention, la matière grasse est intégrée dans une émulsion huile dans eau, ce qui permet de limiter ses
contacts avec l'oxygène de l'air, donc les phénomènes d'oxydation.

En outre et de manière encore plus inattendue et avantageuse, les produits laitiers issus du procédé conforme à l'invention présentent une stabilité accrue vis-à-vis de l'oxydation par rapport à des produits témoins. Ainsi, les problèmes de rancissement qui provoquent l'apparition d'une saveur rédhibitoire dans les produits laitiers sont au moins partiellement résolus par mise en œuvre du procédé suivant l'invention. Ceci est d'autant plus étonnant que, comme précisé ci-avant, le cholestérol extrait est connu pour être un inhibiteur de l'action des lipases qui interviennent dans les phénomènes d'oxydation.

Sans que cela ne puisse constituer une limitation à la présente invention, on peut penser que cette amélioration de la résistance à l'oxydation des produits préparés conformément à l'invention est due notamment au fait que les acides gras libres, naturellement présents dans la matière grasse du lait ou issus de la lipolyse des triglycérides, se complexent aussi avec la cyclodextrine et sont séparés en même temps que les complexes cyclodextrine-cholestérol. Or, ces acides gras libres, souvent insaturés, ont une forte propension à s'oxyder et par là même à induire également l'oxydation d'autres composés insaturés de la matière grasse tels que les triglycérides, les vitamines et les phospholipides.

L'indice d'acide et l'indice de peroxyde sont des paramètres significatifs du niveau d'oxydation des matières grasses laitières ainsi que des produits en contenant.

Suivant la présente invention, l'émulsion huile dans eau de départ utilisée peut être du lait ou de la crème de toute origine animale (vaches ou autres) et de toute nature.

La distinction entre le lait et la crème sera faite en considérant que le premier a une concentration en
matière grasse inférieure ou égale à 10% en poids tandis que celle de la seconde est supérieure à 10% en poids.

Le lait ou la crème peut notamment être cru, traité thermiquement (pasteurisation, stérilisation UHT), enrichi en matière grasse, homogénéisé, ou reconstitué par exemple à partir de matière grasse laitière anhydre et de lait écrémé.

Dans le cadre de l'invention, le terme "cyclodextrine" doit être compris comme englobant non seulement les oligo-saccharides cycliques constitués de 6, 7 ou 8 unités glucopyranose dont l'une au moins peut être mono- ou polysubstituée, mais également des polymères dont les monomères sont constitués par ces oligo-saccharides cycliques.

La cyclodextrine employée peut donc être du type alpha, bêta ou gamma, de préférence bêta, substituée ou non. Les groupements mono- ou polysubstituants de la cyclodextrine peuvent être notamment des alkyles tels que l'hydroxypropyl ou des saccharides du type glycosyl, maltosyl ou autres.

La cyclodextrine sous forme polymérisée, réticulée ou non, pouvant être utilisée dans le procédé conforme à l'invention, est par exemple du type de celle obtenue par polymérisation de monomères de bêta-cyclodextrine avec de l'épichlorhydrine.

Conformément à un premier mode de mise en œuvre du procédé de l'invention, l'étape de mise en contact consiste à ajouter la cyclodextrine dans l'émulsion huile dans eau de départ, puis à mélanger ces deux composés par agitation modérée pendant un temps t suffisant pour permettre la formation de complexes cyclodextrine-stérol (cholestérol).

La température à laquelle est effectuée cette mise en contact est de préférence supérieure ou égale à 1°C, de préférence à 15°C tandis que t est supérieur ou égal à quelques secondes, de préférence à quelques minutes.
De plus, il s'avère que la concentration en cyclodextrine doit être comprise entre 0,01 et 100% en poids par rapport à la matière grasse laitière, de préférence entre 1 et 50% en poids et, plus préférentiellement encore, entre 2 et 25% en poids.

Le mélange cyclodextrine-émulsion huile dans eau de départ est, de préférence, soumis à au moins un traitement physique de séparation des complexes formés se présentant sous forme soluble ou non dans l'eau.

Pour éliminer les complexes se présentant sous forme insoluble dans l'eau, différents traitements peuvent être mis en oeuvre. Il peut s'agir d'une centrifugation, d'une décantation, d'une filtration sur membrane ou de toute autre technique connue en soi et appropriée.

Afin d'améliorer l'efficacité d'un tel traitement, il convient, suivant l'invention et de préférence lorsque la cyclodextrine est sous forme non polymérisée, de diminuer la solubilité des complexes formés en l'effectuant à une température, de préférence inférieure ou égale à 20°C, par exemple égale à 4°C. De cette manière, la proportion de complexes insolubles est augmentée, leur séparation de la (ou des) phase(s) liquide(s) en est donc facilitée.

Dans le cas d'une centrifugation, on obtient une partie liquide et une partie solide formant le culot de centrifugation. Cette partie liquide est constituée d'une phase grasse surnageante ou crème de laquelle ont été extraits au moins en partie les complexes stérols (cholestérol)-cyclodextrine du fait de leur faible affinité pour la matière grasse, et d'une phase aqueuse ou lait écrémé contenant une quantité plus ou moins importante de complexes solubles, suivant la température de traitement choisie.

Le lait écrémé et la crème ainsi obtenue peuvent être homogénéisés pour former un lait entier reconstitué, ou être utilisés séparément.

Si le traitement physique de séparation choisi est
une filtration, le rétentat comprend les complexes insolubles dans l'eau tandis que le filtrat est une émulsion huile dans eau non déphasée. Le produit obtenu à teneur réduite en stérols et notamment en cholestérol est utilisable dans l'industrie laitière à titre de matière première, de produit intermédiaire ou de produit fini.

Suivant une caractéristique avantageuse de l'invention, les complexes se présentant sous forme soluble sont éliminés par l'intermédiaire d'un traitement physique de séparation du type ultrafiltration, osmose inverse ou autres.

De telles techniques sont parfaitement maîtrisées par l'homme du métier. Suivant l'invention, elles peuvent être appliquées directement sur le mélange émulsion de départ/cyclodextrine, sur la phase aqueuse (lait écrémé) issue de la centrifugation ou bien encore sur le filtrat provenant du passage sur membrane du mélange. Elles consistent à concentrer le substrat concerné par passage au travers d'une membrane sélective, de manière à éliminer l'eau ainsi que toutes les substances solubles parmi lesquelles figurent une partie des complexes cyclodextrine-cholestérol.

Conformément à une variante du premier mode de mise en œuvre du procédé conforme à l'invention, s'appliquant plus spécifiquement à la fabrication de fromages du type comprenant une étape de coagulation conduisant à la formation d'un caillé et au moins une étape d'extraction du lactosérum telle que l'égouttage ou le pressage, le lait est de préférence employé comme émulsion huile dans eau de départ et l'on a recours à un agent coagulant.

Celui-ci est ajouté au lait préalablement et/ou simultanément et/ou postérieurement à la mise en contact du lait avec de la cyclodextrine.

Cela permet d'obtenir d'une part, un caillé apte à subir une quelconque transformation fromagère et d'autre part, du lactosérum ou phase aqueuse contenant tout ou
partie des complexes formés. Ce lactosérum est susceptible
d'être au moins partiellement séparé du caillé au cours
d'au moins une étape d'extraction s'intégrant dans la
fabrication du fromage.

La coagulation de la caséine du lait occasionne
une contraction du réseau régulier formé par les protéines
couplées et renfermant les globules gras et le sérum,
avec expulsion progressive de ce dernier. Ce phénomène est
dénommé communément synérèse. Il permet, dans le cadre du
procédé de l'invention, la séparation des complexes
cholestérol-cyclodextrine solubles dans l'eau du caillé.

Ce dernier présente alors l'avantage d'être nota-
blement appauvri en cholestérol.

L'agent coagulant employé est constitué soit par
au moins un acidogène tel que la glucono-delta-lactone
et/ou par des ferment lactiques, soit par au moins une
enzyme coagulante de nature appropriée telle que la
présure, soit par les deux.

Il va de soi que cette variante du procédé confor-
me à l'invention peut être appliquée à toute fabrication
fromagère du type défini ci-dessus et connue par le
technicien compétent dans le domaine considéré. Elle ne
nécessite aucun équipement supplémentaire et n'allonge
sensiblement pas les durées de fabrication.

En outre, l'ajout de cyclodextrine n'entraîne
aucune incidence néfaste tant sur le plan qualitatif que
sur le plan quantitatif sur les fromages obtenus à teneur
réduite en cholestérol.

Suivant un deuxième mode de mise en œuvre du
procédé de l'invention, la mise en contact de l'émulsion
huile dans eau de départ comprenant des matières grasses
d'origine laitière avec de la cyclodextrine, ainsi que la
séparation des complexes formés de l'émulsion de départ
s'effectuent sensiblement simultanément et consistent à
faire migrer ladite émulsion de départ au travers d'un
adsorbant ou absorbant constitué au moins en partie par de
la cyclodextrine.

Il s'agit de préférence d'une chromatographie sur colonne contenant avantagеusement de la bêta-cyclodextrine se présentant sous forme polymérisée, réticulée ou non et obtenue par exemple par polymérisation à l'aide d'un composé bifonctionnel tel que l'épichlorhydrine.

Selon une variante, la cyclodextrine peut être immobilisée sur un support constitué par exemple de billes de verre. Ceci est plus particulièrement applicable au cas où la cyclodextrine se présente sous forme de monomères.

Suivant une caractéristique avantagеuse de l'invention, l'émulsion huile dans eau de départ est portée, avant migration, à une température comprise entre 5 et 60°C.

Dans le cas du lait, cette température est de préférence comprise entre 5 et 35°C. En revanche, pour la crème, plus visqueuse, elle est avantagеusement comprise entre 35° et 60°C.

De toute façon, l'invention sera mieux comprise à l'aide des exemples non limitatifs qui suivent, de mise en œuvre du procédé de préparation de produits laitiers à teneur réduite en stérols et notamment en cholestérol, qu'elle concerne.

EXEMPLE 1

Préparation d'une crème appauvrie en cholestérol par ajout de bêta-cyclodextrine au lait.

Dans cet exemple, le produit de départ est un lait cru de vache non pasteurisé et non homogénisé. Il contient 38 g/l de matières grasses.

De la bêta-cyclodextrine en poudre, commercialisée par la Société ROQUETTE FRERES sous la marque déposée KLEPTOSE® et contenant 13,6% d'eau, est ajoutée au lait entier porté à une température de 25°C environ à raison de 1,0% en poids par rapport au lait, soit 27% en poids par rapport à la matière grasse.

Le mélange lait entier/bêta-cyclodextrine maintenu
À cette température de 25°C, est agité manuellement de façon intense, pendant environ 20 secondes. Il est ensuite refroidi à 4°C de façon à insolubiliser au moins en partie les complexes formés, puis centrifugé à cette température et à 8000 t/min pendant 20 minutes.

Un lait témoin, sans bêta-cyclodextrine, est refroidi et centrifugé, dans les mêmes conditions que celles décrites ci-dessus.

Avant centrifugation, deux phases distinctes sont obtenues dans le cas du lait ne contenant pas de bêta-cyclodextrine. La première, surnageante, est la crème. La seconde, plus lourde, est le lait écrémé. Pour l'essai avec bêta-cyclodextrine, une troisième phase apparaît, sous forme d'un culot solide.

Le cholestérol total contenu dans les crèmes surnageantes et dans les laits écrémés est dosé par chromatographie en phase gazeuse après saponification, extraction de l'insaponifiable et silylation.

Les résultats suivants sont obtenus:

<table>
<thead>
<tr>
<th></th>
<th>Témoin:</th>
<th>Essai avec 1% de bêta-cyclodextrine ajoutée au lait entier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crèmes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>en % de la crème</td>
<td>0,21</td>
<td>0,10</td>
</tr>
<tr>
<td>crème surnageante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lait écrémé</td>
<td></td>
<td></td>
</tr>
<tr>
<td>en % du lait</td>
<td>3,0 x 10^{-3}</td>
<td>2,1 x 10^{-3}</td>
</tr>
<tr>
<td>écrémé</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La crème du lait traité avec bêta-cyclodextrine conformément à l'invention est pauvre en cholestérol. Le taux de réduction par rapport à la crème du lait témoin est de l'ordre de 52%.

Le lait écrémé obtenu par mise en oeuvre du procédé conforme à l'invention ne contient pas plus de cholestérol que le lait écrémé témoin.

L'indice d'acide des crèmes est mesuré par filtra-
tion acidimétrique en millilitres d'hydroxyde de potassium pour 100 grammes de matière grasse (Méthode AFNOR T 60204). La crème témoin présente après préparation un indice d'acide de 0,47, tandis que celui de la crème de l'essai est de 0,22.

Après 15 jours de stockage à l'air libre et à 4°C, la crème témoin possède un indice d'acide de 1,5 et présente un goût rance prononcé, tandis que la crème de l'essai possède un indice d'acide de 0,90 et présente une saveur de crème fraîche. L'amélioration de la stabilité de celle-ci vis-à-vis de l'oxydation ou rancissement est donc bien mise en évidence.

EXEMPLE 2

Taux de cholestérol des crèmes surnageantes en fonction des quantités de bêta-cyclodextrine mises en oeuvre dans le lait.

Dans cet exemple, le lait utilisé est le même que celui employé dans l'exemple 1.

Des quantités croissantes de bêta-cyclodextrine sont ajoutées au lait entier.

Les mélanges lait entier/bêta-cyclodextrine sont agités mécaniquement pendant 15 minutes de façon lente, et à température ambiante. Ils sont ensuite refroidis à 4°C et centrifugés à cette température et à 8000 t/min pendant 20 minutes.

Les dosages de cholestérol sont réalisés comme décrit dans l'exemple 1.

<table>
<thead>
<tr>
<th>Témoin sans bêta-cyclodextrine</th>
<th>Essais avec bêta-cyclodextrine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantités introduites en % du lait entier</td>
<td>0,1</td>
</tr>
</tbody>
</table>

| Cholestérol dans les crèmes surnageantes (en %) | 0,21 | 0,18 | 0,17 | 0,14 | 0,10 | 0,08 |

A mesure que les quantités de bêta-cyclodextrine introduites dans le lait entier augmentent, le cholestérol
présent dans les crèmes surnageantes diminue.

EXEMPLE 3

Préparation d'un lait "entier" pauvre en cholestérol par recombinaison de la crème et du lait écrémé issu du procédé de préparation selon l'invention décrit dans l'exemple 1.

La crème obtenue selon l'invention, après traitement du lait cru, avec 1% de bêta-cyclodextrine, est recombinée au lait écrémé par homogénéisation à 8000 t/min pendant 20 secondes.

Le lait entier ainsi préparé présente un taux de cholestérol réduit de 51% par rapport au lait entier témoin obtenu de la même manière. Les deux laits présentent un pH identique de 6,90.

De plus, le lait entier obtenu par mise en oeuvre du procédé selon l'invention possède des qualités organo-leptiques et une stabilité physique au stockage à 5°C, comparables au lait entier témoin.

En ce qui concerne la stabilité à l'oxydation, il apparaît que celle du lait entier obtenu par mise en oeuvre du procédé de l'invention est supérieure à celle du lait entier témoin.

EXEMPLE 4

Préparation d'une crème à teneur réduite en cholestérol par ajout de bêta-cyclodextrine polymérisée et filtration sur membrane.

La crème utilisée dans cet exemple est une crème UHT commerciale contenant 35% de matières grasses et 0,12% de cholestérol total. Elle contient 99,98% des lipides contenus dans le lait initial.

La cyclodextrine utilisée est une bêta-cyclodextrine polymérisée à l'épichlorhydrine.

La crème est chauffée à 40°C. Une quantité de 2% en poids de bêta-cyclodextrine polymérisée, soit 6% en poids par rapport à la matière grasse, est ajoutée à la crème. L'ensemble est agité pendant 10 minutes à cette
température, puis filtré sur membrane.

La crème filtrée n'a pas été destabilisée par l'ajout de cyclodextrine. Elle présente une teneur en cholestérol total de 0,07% en poids soit une réduction de 42% de la teneur en cholestérol.

EXEMPLE 5

Préparation d'un lait entier pauvre en cholestérol par passage sur une colonne de bêta-cyclodextrine polymérisée.

Dans cet exemple, le lait de départ est un lait cru, non homogénéisé et non pasteurisé, présentant une teneur en matière grasse de 37,5 g/l, une densité de 1,0332 et une teneur en cholestérol total de 21,5 mg pour 100 g.

La cyclodextrine employée est une bêta-cyclodextrine polymérisée à l'épichlorhydrine.

Préparation des colonnes chromatographiques avec bêta-cyclodextrine polymérisée:

La bêta-cyclodextrine polymérisée est hydratée dans 6 à 10 fois son poids en eau. Elle est ensuite introduite dans une colonne en verre, et lavée à l'eau déminéralisée.

Passage du lait sur la colonne:

Le lait entier porté à une température de 20°C est chromatographié sur deux colonnes différentes préparées comme décrit ci-dessus. Les volumes de lait, élués, correspondent au moins à 50 fois la quantité de cyclodextrine contenue dans la colonne.

Les dosages de cholestérol total et d'indices d'acide sont effectués selon les méthodes décrites dans l'exemple 1.
Les densités et les teneurs en matières grasses des laits entiers chromatographiés sont sensiblement égales à celles du lait de départ soit respectivement 1,0332 et 37,3 g/l.

Les taux de réduction en cholestérol sont de l'ordre de 30% et ceux en indice d'acide de l'ordre de 50%.

Dans cet exemple, le lait entier constitue l'émulsion huile dans eau de départ. Bien entendu, cette dernière peut également être de la crème. Dans ce cas, il est évident pour l'homme du métier d'augmenter la température de passage sur la colonne, compte tenu du risque de colmatage de celle-ci en raison de la plus haute viscosité de la crème à température ambiante.

EXEMPLE 6

Préparation d'un caillé à teneur réduite en cholestérol par introduction de bêta-cyclodextrine dans le lait et séparation des complexes formés lors de l'égouttage.

Dans cet exemple, l'émulsion de départ est un lait entier pasteurisé du commerce contenant 36,5 g/l de matières grasses et 0,017% de cholestérol soit 0,46% de cholestérol par rapport à la matière grasse.

L'agent coagulant utilisé est constitué par des ferment lactiques et par une enzyme: la présure.

Une quantité de 1 litre de lait est ensemencée à l'aide de bactéries lactiques pures se développant à basse température.

Au terme de la fermentation, de la bêta-cyclodextrine pulvérulente, commercialisée par la société ROQUETTE
FRERES sous la marque déposée KLEPTOSE® et contenant 13,6% d'eau est ajoutée au lait à raison de 1,0% en poids, à une température de 18-20°C.

Le mélange lait/bêta-cyclodextrine est agité manuellement de façon intense pendant environ 20 secondes.

L'emprésurage est ensuite réalisé à cette même température de 18-20°C, à raison de 0,01 à 0,02 ml de pressure diluée au 1/10 000 pour 1 litre de lait. Après 24 heures de coagulation, le caillé est égoutté de manière à éliminer le lactosérum.

Un litre de lait témoin auquel l'on n'a pas ajouté de bêta-cyclodextrine a été traité dans les mêmes conditions pour obtenir un caillé.

Les dosages effectués conformément à la méthode décrite dans l'exemple 1 ont donné les résultats suivants:

<table>
<thead>
<tr>
<th>Essai avec lait</th>
<th>Essai avec lait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin sans ajout</td>
<td>contenant 1% en poids</td>
</tr>
<tr>
<td>de bêta-cyclodextrine</td>
<td>de bêta-cyclodextrine</td>
</tr>
</tbody>
</table>

| Cholestérol en % par rapport à la matière grasse du caillé | 0,40 | 0,19 |

Le taux de réduction en cholestérol du caillé obtenu par mise en œuvre du procédé suivant l'invention est de l'ordre de 52%.

Après 15 jours de stockage des caillés à l'air libre et à 4°C, il est apparu que le caillé préparé avec ajout de bêta-cyclodextrine dans le lait avait moins souffert du rancissement que celui préparé sans ajout de bêta-cyclodextrine dans le lait.

Il a été également observé que l'ajout de bêta-cyclodextrine ne perturbe pas les aptitudes fromagères du lait. Hormis une légère diminution de la fermentés, le caillé obtenu à partir du lait traité suivant l'invention présente sensiblement les mêmes qualités que celui obtenu à partir du lait témoin.
Il ressort des exemples décrits ci-dessus que le procédé conforme à l'invention permet d'obtenir des produits laitiers à stabilité accrue à l'oxydation et à teneur réduite en stérols et notamment en cholestérol de façon particulièrement aisée et économique.

A partir d'émulsions de départ telles que le lait ou la crème, ce procédé permet notamment, de préparer du lait entier, de la crème, du lait notamment écrémé, du fromage appauvris en cholestérol.

Il est clair que ces produits peuvent être destinés directement à la consommation, ou transformés en différents produits laitiers finis ou semi-finis.

C'est ainsi que le lait entier appauvri en cholestérol peut servir de base à la préparation de yaourts, de fromages, de crèmes elles-mêmes utilisables par exemple comme matière première dans la fabrication de beurre ou sous une forme transformée ou non comme ingrédient alimentaire, ou autres.

Une crème appauvrie en cholestérol par mise en oeuvre du procédé conforme à l'invention peut être, soit homogénéisée avec un lait écrémé standard pour former un lait entier reconstitué, directement consommable ou utilisable dans la fabrication de produits lactés, soit utilisée également comme produit directement consommable ou comme produit de départ ou intermédiaire dans la fabrication de produits lactés.

Cette énumération n'est nullement limitative. Elle est destinée à donner une indication sur les multiples débouchés des produits laitiers obtenus par mise en oeuvre du procédé selon l'invention.
REVENDICATIONS

1. Procédé de préparation de produits laitiers à teneur réduite en stérols et notamment en cholestérol, caractérisé en ce qu'il consiste essentiellement à mettre en contact une émulsion huile dans eau comprenant des matières grasses d'origine laitière avec de la cyclodextrine en quantité suffisante pour former des complexes d'inclusion avec les stérols de telle sorte que ces derniers puissent être extraits de la matière grasse, et de façon simultanée ou non, à séparer au moins partiellement lesdits complexes du milieu sans inverser l'émulsion huile dans eau de départ.

2. Procédé selon la revendication 1, caractérisé en ce que l'émulsion huile dans eau de départ utilisée est du lait ou de la crème de toute origine animale et de toute nature, la concentration en matières grasses du lait étant inférieure ou égale à 10% en poids et celle de la crème supérieure à 10% en poids.

3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que la cyclodextrine employée est du type alpha, bêta ou gamme, substituée ou non.

4. Procédé selon la revendication 3, caractérisé en ce que la cyclodextrine est du type bêta.

5. Procédé selon la revendication 3 ou la revendication 4, caractérisé en ce que la cyclodextrine est sous forme polymérisée réticulée ou non.

6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la mise en contact consiste tout d'abord à mélanger l'émulsion huile dans eau de départ avec de la cyclodextrine, pendant un temps suffisant pour permettre la formation de complexes.

7. Procédé selon la revendication 6, caractérisé en ce que la mise en contact s'effectue à une température supérieure ou égale à 1°C, de préférence à 15°C.

8. Procédé selon la revendication 6 ou la revendication 7, caractérisé en ce que t est supérieur ou égal
à quelques secondes et de préférence quelques minutes.

9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que la concentration en cyclodextrine est comprise entre 0,01 et 100% en poids par rapport à la matière grasse laitière, de préférence entre 1 et 50% en poids et plus préférentiellement encore entre 2 et 25% en poids.

10. Procédé selon l'une quelconque des revendications 6 à 9, caractérisé en ce que le mélange ainsi obtenu est soumis à au moins un traitement physique de séparation des complexes formés se présentant sous forme soluble ou non dans l'eau.

11. Procédé selon la revendication 10, caractérisé en ce que le traitement physique de séparation est du type centrifugation, décantation, filtration ou autres et permet d'éliminer au moins partiellement les complexes se présentant sous forme insoluble dans l'eau.

12. Procédé selon la revendication 10 ou la revendication 11, caractérisé en ce que le traitement physique de séparation est du type ultrafiltration, osmose inverse ou autres et permet d'éliminer au moins partiellement les complexes se présentant sous forme soluble dans l'eau.

13. Procédé selon la revendication 11, caractérisé en ce que la cyclodextrine utilisée est sous forme non polymérisée et en ce que le traitement physique de séparation est effectué à une température choisie de manière à diminuer la solubilité dans l'eau des complexes formés.

14. Procédé selon la revendication 13, caractérisé en ce que cette température est inférieure ou égale à 20°C, et de préférence de l'ordre de 4°C.

15. Procédé selon l'une quelconque des revendications 6 à 9, appliqué à la fabrication de fromages du type comprenant une étape de coagulation conduisant à la formation d'un caillé et au moins une étape d'extraction du lactosérum, caractérisé en ce que l'émulsion huile dans eau de départ est de préférence un lait et en ce qu'il
consiste à ajouter à l'émulsion huile dans eau de départ un agent coagulant de manière à obtenir d'une part, un caillé apte à subir toute transformation fromagère et d'autre part un lactosérum ou phase aqueuse contenant tout ou partie des complexes formés et étant susceptible d'être au moins partiellement séparé du caillé au cours d'une étape d'extraction.

16. Procédé selon la revendication 15, caractérisé en ce que l'agent coagulant est constitué par au moins un acidogène et/ou par des ferments lactiques, associé(s) à ou remplacé(s) par au moins une enzyme coagulante de nature appropriée telle que la présure.

17. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la mise en contact et la séparation s'effectuent sensiblement simultanément et consistent à faire migrer l'émulsion huile dans eau de départ au travers d'un adsorbant ou absorbant constitué au moins en partie par de la cyclodextrine.

18. Procédé selon la revendication 15, caractérisé en ce que l'émulsion huile dans eau est portée, avant migration, à une température comprise entre 5 et 60°C.

19. Procédé selon la revendication 15 ou la revendication 16, caractérisé en ce que la cyclodextrine employée est du type bêta et se présente sous forme poly- mérisée, réticulée ou non.

20. Procédé selon l'une quelconque des revendications 15 à 18, caractérisé en ce que la cyclodextrine est immobilisée sur un support.

21. Procédé selon la revendication 20, caractérisé en ce que la cyclodextrine se présente sous forme de monomères.

22. Produit laitier caractérisé en ce qu'il est obtenu par mise en œuvre du procédé selon l'une quelconque des revendications 1 à 21 et en ce qu'il présente une stabilité accrue à l'oxydation.

23. Produit laitier caractérisé en ce qu'il est
obtenu par mise en œuvre du procédé selon l'une quelconque des revendications 1 à 21 et en ce qu'il est employé directement comme produit laitier fini et/ou comme matière première ou produit intermédiaire, dans la fabrication de composés lactés finis appauvris en cholestérol et à stabilité accrue à l'oxydation.
OBJET DE L'AVIS DOCUMENTAIRE

- Conférant à son titulaire le droit exclusif d'exploiter l'invention, le brevet constitue pour les tiers, une importante exception à la liberté d'entreprendre.
 C'est la raison pour laquelle la loi prévoit qu'un brevet n'est valable que si, entre autres conditions, l'invention :
 • est "nouvelle", c'est-à-dire n'a pas été rendue publique en quelque lieu que ce soit, avant sa date de dépôt,
 • implique une "activité inventive", c'est-à-dire dépasse le cadre de ce qui aurait été évident pour un homme du métier.

- L'Institut n'est pas habilité, sauf absence manifeste de nouveauté, à refuser un brevet pour une invention ne répondant pas aux conditions ci-dessus.
 C'est aux tribunaux qu'il appartient de prononcer la nullité à la demande de toute personne intéressée, par exemple à l'occasion d'une action en contrefaçon.
 L'Institut est toutefois chargé d'annoncer à chaque brevet un "AVIS DOCUMENTAIRE" destiné à alerter le public et les tribunaux sur les antériorités susceptibles de s'opposer à la validité du brevet.

CONDITIONS D'ÉTABLISSEMENT DU PRESENT AVIS

- Il a été établi sur la base des "revendications" dont la fonction est de définir les points sur lesquels l'inventeur estime avoir fait œuvre inventive et entend en conséquence être protégé.

- Il a été établi à l'issue d'une procédure contradictoire (1) au cours de laquelle :
 ☑ le résultat d'une recherche d'antériorités effectuée parmi les brevets et autres publications a été notifié au demandeur et rendu public.
 ☑ les tiers ont présenté des observations visant à compléter le résultat de la recherche
 ☑ le demandeur a modifié les revendications pour tenir compte du résultat de cette recherche
 ☑ le demandeur a modifié la description pour en éliminer les éléments qui n'étaient plus en concordance avec les nouvelles revendications.
 ☑ le demandeur a présenté des observations pour justifier sa position.

EXAMEN DES ANTERIORITES

- Cet examen n'a pas été nécessaire, car aucun brevet ou autre publication n'a été relevé en cours de procédure.

- Les brevets et autres publications (1), ci-après, cités en cours de procédure, n'ont pas été examinés car pour être efficace, cet examen suppose au préalable une vérification des priorités (2):

- Les brevets et autres publications (1) ci-après, cités en cours de procédure, n'ont pas été retenus comme antériorités :

 PATENT ABSTRACTS OF JAPAN, vol. 6, n° 114 (C-110)(992), 25 juin 1982. &

CONCLUSION : EN L'ETAT, AUCUNE ANTERIORITE N'A ETALE RETENUE

(1) - Les pièces du dossier, ainsi que les brevets et autres publications cités, peuvent être consultés à l'INPI ou délivrés en copie.
(2) - Tout renseignement peut être obtenu de l'INPI : demander l'aide-mémoire "Intercales et Interferences".