BREVET D'INVENTION

PROCEDE DE FABRICATION DE PRODUITS LAITIERS A TENEUR REDUITE EN STEROLS, ET PRODUITS AINSI OBTENUS

Date de dépôt : 29.06.89.
Priorité :

Date de la mise à disposition du public de la demande : 04.01.91 Bulletin 91/01.
Date de la mise à disposition du public du brevet d'invention : 18.10.91 Bulletin 91/42.

Liste des documents cités dans le rapport de recherche :

Se reporter à la fin du présent fascicule

Références à d'autres documents nationaux apparentés :

Demandeur(s) : ROQUETTE FRERES, Société anonyme. FR.

Inventeur(s) : JEAN GRAILLE - DANIEL PIOCH - MICHEL SERPELLONI - LEON MEN-TINK

Titulaire(s) :

Mandataire(s) : CABINET PLASSERAUD
PROCEDE DE FABRICATION DE PRODUITS LAITIERS
A TENEUR REDuite EN STEROLS, ET PRODUITS AINSI OBTENUS

La présente invention est relative à un procédé de fabrication de produits laitiers à teneur réduite en stérols.

Parmi ces produits, on s'attachera dans ce qui suit plus particulièrement au cas du beurre sans que cela ne puisse constituer une limitation à la présente invention.

Il est connu que les stérols et plus spécifiquement le cholestérol sont des composés présents dans les matières grasses d'origine animale entrant dans la composition de bon nombre d'aliments dont le beurre fait partie intégrante.

Or, il a été établi depuis fort longtemps que des taux sanguins élevés de cholestérol (cholestérol LDL) sont en corrélation directe avec des maladies cardio-vasculaires graves.

La principale d'entre elles est l'athérosclérose qui se traduit par l'altération de la paroi des artères et dont l'une des causes est le dépôt localisé, excessif et anormal de cholestérol sur la face interne de la paroi d'une artère. L'athérome ainsi formé peut avoir des conséquences tragiques comme l'infarctus du myocarde. A titre illustratif, on peut indiquer qu'une diminution de 1% du cholestérol sanguin total entraîne une diminution de 2% du risque coronarien. L'excès de cholestérol peut également être à l'origine de calculs biliaires.

La prévention demeure l'un des moyens les plus efficaces pour remédier à ces pathologies. Elle peut consister à diminuer autant que possible l'ingestion d'aliments riches en cholestérol ou bien encore à consommer des denrées à teneur réduite en cholestérol.

Le souci des industriels de l'alimentaire est donc
d'éliminer le cholestérol des produits tels que les graisses animales.

Ainsi, il a déjà été proposé diverses méthodes d'extraction des stérols des graisses.

L'une d'elles consiste à mettre en contact la matière grasse d'origine animale avec de la digitonine qui a la propriété de réagir avec le cholestérol pour donner un précipité. Les performances et les résultats de cette méthode ne sont pas satisfaisants du fait de la difficulté de séparation du précipité du milieu. Cette méthode est, en tout état de cause, inapplicable industriellement, notamment pour des produits alimentaires.

Le cholestérol peut également être extrait des matières grasses par entraînement à l'aide d'un solvant.

L'inconvénient majeur de ce procédé est que les solvants généralement employés sont toxiques et qu'il en reste toujours des traces dans les matières grasses considérées.

On connaît également des procédés de microdistillation, inapplicables au niveau industriel, ou bien encore d'adsorption sur colonnes comme il est décrit par exemple dans les demandes de brevet européen EP N° 0174848 et EP N° 0318326. Ces demandes enseignent un procédé suivant lequel la matière grasse maintenue à l'état liquide passe au travers d'une colonne d'adsorbant en l'occurrence du charbon actif. Il et clair qu'un tel procédé est très lourd à mettre en œuvre et de surcroît l'extraction qu'il permet n'est pas très sélective.

Un autre procédé physico-chimique d'extraction du cholestérol des graisses est divulgué par la demande de brevet japonais JP N° 59-140299. Elle consiste à mettre en contact une matière sèche chargée en cholestérol telle que de la poudre de lait, avec du CO₂ supercritique à une température comprise entre 35 et 45°C et à une pression comprise entre 130 et 200 atm. L'obtention de ces conditions physiques nécessite l'emploi d'un matériel complexe et onéreux. La conduite du procédé en est ainsi très déli-
cate. De plus, comme il est précisé dans la demande de brevet, d'autres composés lipidiques sont entraînés par le CO₂ supercritique. Ce procédé n'est donc pas sélectif.

Pour éliminer les stérols des graisses, il a été également imaginé un procédé de biodégradation des dits stérols divulgué par la demande de brevet EP N° 0278794 et mettant en œuvre des bactéries, qui mises au contact de la matière grasse, sont aptes à métaboliser au moins l'un des stérols qu'elle contient. Comme tous les procédés faisant intervenir des fermentations, ce procédé de biodégradation est très délicat à conduire du fait de la variabilité inhérente à la matière vivante. De plus, les matériels employés, la durée relativement longue, sont, entre autres, des éléments qui rendent un tel procédé onéreux. Enfin, les catabolites produits lors de ces fermentations restent à ce jour totalement inconnus sur le plan de leur nature et de leur toxicité, et sont, de toute façon, présents dans la matière grasse ainsi traitée.

On connait aussi par la demande de brevet européen EP N° 0256911, un procédé d'élimination du cholestérol contenu dans une matière grasse d'origine animale. Il est basé sur la propriété déjà mise à jour qu'ont les cyclodextrines (polyglucoses cycliques de conformation tubulaire tronconique à 6, 7 ou 8 motifs glucose et désignées respectivement par alpha, béta ou gamma cyclodextrine) de recevoir dans leur cavité centrale hydrophobe des molécules de stérols et notamment de cholestérol, pour former des complexes d'inclusion solubles dans l'eau. Selon ce procédé, la matière grasse maintenue fluide est mise en contact avec une cyclodextrine sous agitation pendant 30 minutes à 10 heures de façon à permettre la formation de complexes. La séparation de ces derniers est ensuite réalisée par introduction d'eau dans le milieu réactionnel, laquelle solubilise ces complexes. La solution aqueuse ainsi obtenue est ensuite recueillie après décantation.

Le rendement d'extraction du cholestérol par ce
procédé est peu important. Dans le meilleur des cas, il n'est en effet que de 41%, et ce après trois extractions successives comme il est indiqué dans l'exemple 3 de la description de cette demande de brevet européen.

Hormis ces performances peu satisfaisantes, ce procédé constitue une succession d'étapes supplémentaires dans la fabrication d'un produit alimentaire. En effet, la démarche si elle était adoptée, par exemple dans le cas du beurre, nécessiterait tout d'abord de fabriquer le produit à base de matière grasse, sous une forme anhydre, de lui faire subir le traitement d'extraction du cholestérol, puis de l'amener sous sa forme de produit alimentaire fini, c'est-à-dire de beurre reconstitué. Ce procédé serait donc nécessairement coûteux en temps, en matériel et en énergie. En outre, il est à noter que selon ce procédé la matière grasse doit être maintenue en fusion sous une atmosphère exempt de l'oxygène. Ces caractéristiques techniques impliquent le recours à un appareillage spécifique de maintien en température et d'alimentation en gaz neutre. Enfin, la durée nécessaire uniquement pour la première phase de complexation est au minimum de 30 minutes et en réalité de 2 à 3 heures comme indiqué dans les exemples.

Il ressort de ce qui précède qu'aucune des solutions de l'art antérieur n'a permis jusqu'ici de maintenir de produire des matières grasses alimentaires appauvries en stérols --notamment en cholestérol-- de manière satisfaisante, c'est-à-dire répondant aux conditions industrielles de rentabilité économique, de souplesse d'utilisation, et de qualité du produit final.

La présente invention vise à remédier aux inconvénients précédemment mentionnés de l'art antérieur.

Pour y parvenir, la Société Demanderesse s'est tout d'abord attachée à reformuler le problème technique posé qui consistait à éliminer les stérols des matières grasses.
C'est ainsi qu'il lui a semblé plus opportun de se focaliser sur les méthodes de fabrication de produits laitiers dérivés de la crème de lait, par exemple de beurre, contenant des matières grasses, en les améliorant de telle sorte qu'elles permettent l'obtention de produits à teneur réduite en stérols. Il faut observer que cette première démarche ne s'imposait pas à l'évidence puisque, malgré l'existence déjà ancienne des préoccupations à l'égard du cholestérol, elle n'avait encore jamais été envisagée.

Dans un deuxième temps, la Demanderesse a mené toute une série d'études et de recherches sur les procédés de fabrication de produits dérivés de crème de lait qui l'ont conduit à mettre en évidence le fait que, de façon tout à fait surprenante et inattendue, de la cyclodextrine mise en contact de crème de lait se présentant sous la forme d'une émulsion huile dans eau, complexe le cholestérol présent, qu'il suffit alors d'inverser l'émulsion huile dans eau de départ en émulsion eau dans huile et que les complexes d'inclusion cyclodextrine / stérols n'ayant pas d'affinité pour la phase grasse, il est alors aisé de les éliminer par tout moyen approprié et connu en soi.

Contrairement à ce qui semblait prévisible, la crème de lait n'entrave pas le phénomène de complexation.

La présente invention se rapporte ainsi à un procédé de fabrication de produits laitiers appauvris en stérols dans lequel le produit de départ utilisé est composé au moins en partie de crème de lait et se présente sous forme d'une émulsion huile dans eau, et consistant essentiellement:
- à mettre en contact avec le produit de départ une quantité de cyclodextrine suffisante pour former des complexes d'inclusion avec les stérols présents dans la matière grasse, de manière à les rendre extractibles de celle-ci;
6

- à inverser l'émulsion huile dans eau de départ en émulsion eau dans huile;
- à extraire en tout ou partie les complexes formés.

Ces deux dernières étapes peuvent se dérouler successivement ou simultanément.

Un tel procédé permet une excellente intégration des opérations de fabrication. Il ne perturbe en aucune façon l'élaboration des produits laitiers dérivés de la crème de lait. De plus, il n'alourdit que très peu le coût de revient du produit puisque, d'une part, il ne nécessite pas d'équipements lourds supplémentaires, ni de surconsommation d'énergie et d'autre part, il n'allonge pratiquement pas la durée du procédé de fabrication classique. Enfin, il permet de réduire considérablement le taux de stérols.

Dans le cadre de l'invention, le terme "cyclodextrine" doit être compris comme englobant non seulement les oligo-saccharides cycliques constitués de 6, 7 ou 8 unités glucopyranose dont l'une au moins peut être mono- ou poly-substituée, mais également des polymères dont les monomères sont constitués par ces oligo-saccharides cycliques.

Sans que cela ne soit limitatif, la présente invention concerne, notamment, la fabrication de beurre à teneur réduite en cholestérol.

A ce stade, il est bon de procéder à quelques rappels sur la fabrication traditionnelle de beurre.

Dans cette fabrication, la matière première employée est la crème. Cette dernière est en fait du lait enrichi en matière grasse, obtenu par écrémage spontané ou centrifuge. Elle est constituée d'une émulsion huile dans eau ou suspension colloidale de particules (globules de matière grasse et micelles protéiques) dans une phase aqueuse dispersante pouvant représenter 30 à 90% du poids total, généralement autour de 55 à 65%.

Classiquement, cette crème est ensuite soumise à une pasteurisation se déroulant à une température de
l'ordre de 90°C pendant 30 à 90 secondes et dont les buts sont les suivants:
- la destruction des germes pathogènes;
- la destruction de la plus grande partie de la microflore originelle;
- la destruction des lipases, qui sont des facteurs de rancissement;
- et la formation de produits sulfurés réducteurs, qui s'opposent à l'oxydation de la graisse.

L'étape qui suit est celle de maturation de la crème. Elle consiste en une fermentation destinée d'une part à abaisser le pH par la transformation du lactose en acide lactique, et d'autre part à élaborer des arômes, du dicacétyle en particulier. Cette opération permet l'optimisation de la fabrication et de la conservation du beurre et améliore ses qualités organoleptiques.

Il faut noter que cette maturation "biologique" peut être supprimée ou remplacée par une maturation "physique" (procédé Nizo). Dans ce cas, la crème n'aura pas subi d'abaissement de pH; elle sera qualifiée de "douce".

Cette crème mûrée ou non sert de base à l'opération essentielle de la fabrication du beurre, à savoir la butyrrification. Cette dernière repose sur une modification de la suspension des globules gras avec inversion des phases de l'émulsion. Selon les procédés, une proportion plus ou moins importante des globules gras est détruite par agitation mécanique.

L'émulsion huile dans eau fluide initiale que constitue la crème de lait, donne naissance à un milieu biphasique constitué d'une part de beurre qui est une émulsion d'eau dans huile titrant environ 80% de matière grasse, et d'autre part de babeurre ou phase aqueuse contenant le lactose, des protéines, des sels minéraux et des lipides.

Dans le barattage discontinu classique et dans les procédés les plus répandus du barattage continu, c'est
l'agitation qui réalise cette transformation. Ces procédés traitent des crèmes de concentration moyenne de 30 à 40% de matière grasse à une température de l'ordre de 6-7°C pour les crèmes "douces" et comprise entre 9 et 13°C pour les crèmes "acides". Cette température est dépendante de la composition de la matière grasse qui varie en fonction des saisons.

L'inversion de l'émulsion résulte en réalité de la conjugaison de l'agitation mécanique et des paramètres suivants: acidité de la crème, teneur en matière grasse, température.

La déstabilisation de l'émulsion est la conséquence de la destruction de la membrane des globules gras située à l'interface phase aqueuse - phase grasse : la matière grasse va assurer une liaison continue entre globules initialement voisins. Cette métamorphose se matérialise par l'apparition de grains de beurre, dont le diamètre moyen peut varier de quelques dixièmes de millimètre à quelques millimètres en fin de barattage. La phase grasse devient ainsi une phase continue emprisonnant des gouttelettes de phase aqueuse, leurs proportions pondérales étant respectivement de 82% minimum et de 16% maximum. La matière sèche non grasse représente environ 2% du poids du beurre. La taille des diverses particules (gouttelettes d'eau, globules gras, bulles d'air) présentes dans le beurre varie avec la température, la vitesse et la durée du barattage.

Pour terminer, la séparation de la phase aqueuse excédentaire ou babeurre est réalisée par malaxage du beurre. De cette manière, l'essentiel de la phase aqueuse, constituant à l'origine la phase continue de la crème, est expulsé de l'espace intergranulaire du beurre. Le malaxage est de préférence associé à un lavage à l'eau.

Il est à noter que, suivant la méthode alternative de fabrication du beurre appelée méthode du Nizo (Hollande) et indiquée ci-avant, la maturation fermentaire de la
crème est remplacée par une maturation "physique" (5 h à 6°C). L'ensemencement par des souches aromatisantes et acidifiantes ne se fait alors qu'au cours du malaxage.

Dans les conditions du procédé conforme à la présente invention et appliqué à la fabrication de beurre, il s'avère que la cyclodextrine a une affinité remarquable pour la fraction stérolique représentée à 98% par du cholestérol. Le rendement de complexation est excellent. Le cholestérol sous forme complexé a perdu son affinité vis-à-vis des globules gras de la phase lipidique. Il devient ainsi dispersible dans l'eau et pourra par conséquent être séparé aisément du beurre. Ce beurre ainsi obtenu présente un taux de cholestérol extrêmement réduit.

Avantageusement, la teneur en matière grasse de la crème utilisée est comprise entre 10 et 70% en poids et de préférence 35 à 45% en poids.

La cyclodextrine employée est du type alpha, bêta ou gamma, de préférence bêta, substituée ou non. Les groupements mono- ou polysubstituants de la cyclodextrine peuvent être notamment des alkyls tels que l'hydroxypropyl ou des saccharides du type glycosyl, maltosyl ou autres. Sa concentration varie de 0,01 à 25% en poids par rapport à la matière grasse, de préférence de 0,5 à 18% et plus préférentiellement encore de 1 à 10%, par exemple de l'ordre de 8% en poids.

Dans le procédé de l'invention, la crème subit éventuellement un traitement thermique du type pasteurisation, ou stérilisation UHT, éventuellement une maturation soi biologique à visée acidifiante et aromatisante soit "physique", puis nécessairement une inversion d'émulsion telle que le barattage à température sensiblement constante et contrôlée, suivie d'un malaxage de préférence associé à un lavage à l'eau.

Dans le cas d'une maturation physique de la crème, l'acidification et l'aromatisation sont effectuées au cours du malaxage.
10

La cyclodextrine peut être ajoutée à la crème à
tout moment avant l'inversion d'émulsion, mais de préfé-
rence immédiatement avant celle-ci.

Suivant un mode préféré de mise en œuvre du pro-
cédé conforme à l'invention, on introduit dans une crème
industrielle traitée thermiquement ou non et à teneur en
matière grasse comprise entre 35 et 45% en poids, de la
béta-cyclodextrine sous forme pulvérulente à une concen-
tration comprise entre 1 et 10% en poids, de préférence de
l'ordre de 8% en poids par rapport à la matière grasse. La
béta-cyclodextrine employée est par exemple du type de
celle commercialisée par la Société ROQUETTE FRERES sous
la marque KLEPTOSE® se présentant sous la forme d'une poul-
dre blanche et fine et contenant environ 13 à 14% d'eau.

La crème est ensuite agitée modérément pendant au moins
quelques secondes, et de préférence au moins 120 secondes,
a une température de préférence comprise entre 5 et 20°C
et correspondant à la température normale de barattage.

Par la suite, la crème est agitée mécaniquement à
ladite température, pendant une durée suffisante pour
permettre la formation de grains de beurre. Ces derniers
sont ensuite séparés du babeurre puis subissent une
opération de malaxage de préférence associée à un lavage à
l'eau.

Suivant une variante de l'invention, préalablement
t à l'introduction de cyclodextrine, on ajoute à la crème
environ 2\% de laitensemencé avec des levains lactiques,
de manière à produire une fermentation d'une durée de
l'ordre de 16 heures, à une température d'environ 30°C.

Suivant une autre variante de l'invention, préala-
blement à l'introduction de cyclodextrine, la crème est
soumise à une maturation physique consistant en un
stockage à une température comprise entre 4 et 8°C, de
préférence sensiblement égale à 6°C pendant environ 6
heures. Par ailleurs, au cours du malaxage, la masse de
beurre est ensemencée par un mélange de ferments lactiques
et d'un concentré de culture acide.

Cette variante montre que le pH ne semble avoir que peu d'incidence sur la complexation des cyclodextrines avec les stérols et notamment avec le cholestérol.

Le procédé selon l'invention permet une réduction du taux de cholestérol dans le beurre. En outre, l'addition de béta-cholestérol n'a aucune incidence néfaste sur la fabrication du beurre tant sur le plan qualitatif, que sur le plan quantitatif.

Le procédé selon la présente invention peut également être appliqué à la fabrication de matière grasse laitière anhydre (M.G.L.A.). Ladite fabrication peut être effectuée de manière directe à partir de crème ou de manière indirecte, à partir d'un beurre obtenu par mise en œuvre du procédé de fabrication conforme à l'invention et décrit ci-avant.

De toute façon, l'invention sera mieux comprise à l'aide des exemples non limitatifs suivants.

EXEMPLE I

Fabrication de beurre par mise en œuvre d'un procédé traditionnel par barattage et sans maturation préalable.

Dans cet exemple, le produit départ est la crème industrielle pasteurisée contenant 40% en poids de matière grasse comprenant elle-même 0,13% en poids de cholestérol, soit 394 mg de cholestérol pour 300 g de crème.

Le barattage est effectué en laboratoire au moyen d'un dispositif comprenant:

Un batteur (Philipps, modèle HR 1480) muni de fouets est placé au-dessus d'un bêcher en polypropylène contenant la crème. Ce dernier est plongé dans un bain d'eau maintenu à température constante de barattage, à savoir 10°C en été et 13°C en hiver.

Le batteur électrique est relié au secteur par l'intermédiaire d'un auto-transformateur, afin de pouvoir faire varier la vitesse de rotation. Un éclairage convenablement placé au-dessus du montage facilite l'observation.
de la manipulation, en particulier lors de la déstabilisation de l'émulsion. Un chronomètre vient compléter cet équipement.

Pour le barattage le système d'agitation (batteur à fouets) est réglé à 90-100 tours par minute. L'observation visuelle permet de situer l'état d'avancement du processus d'inversion de l'émulsion. Après quinze minutes environ, il y a formation de mousse avec augmentation du volume (foisonnement).

L'expulsion de la matière grasse se fait ensuite par cisaillement entre les fouets et contre les parois du bécher. Un éclairage adapté permet à un observateur entraîné de déceler l'apparition de petits grains (diamètre inférieur à 1 mm) qui accompagne la "tombée de la mousse", au bout de trente minutes environ. C'est le moment où le beurre se sépare des grains de beurre. La couleur du solide change et devient subitement jaune. Le barattage est terminé environ quarante minutes après le début de la manipulation et les grains de beurre ont alors la taille de grains de riz.

Le lavage et la séparation de la phase aqueuse (beurre + eau de lavage) s'effectuent dans un filtre, au-dessus d'un bécher récepteur. Ce filtre a été monté au laboratoire au moyen d'un cylindre en acier (hauteur 13 cm, diamètre 8 cm) et d'une grille de tamis métallique calibré 80 mesh, solidement liés.

Le mélange hétérogène obtenu après barattage, est transvasé dans le filtre et le beurre s'écoule par gravité dans le bécher récepteur. Le lavage se fait au moyen d'une pissette avec un volume d'eau déminéralisée refroidie à 10°C ou 13°C, égal à trois fois le volume de la crème. Lors de l'agitation à la spatule, les grains de beurre augmentent de volume et s'agglomèrent sous forme de mottes.

Le beurre est alors transvasé dans un bécher taré où il subit l'opération de malaxage par trituration avec
une spatule, destinée à rendre le beurre plus compact et à faciliter ainsi l'élimination de la phase aqueuse excédentaire; celle-ci est jointe au filtrat obtenu. A l'issue de cette dernière étape, le bécher est pesé pour déterminer la quantité de beurre et établir un bilan de fabrication.

Dans cet exemple, le rendement pondéral de fabrication correspondant au rapport:

\[
poids_{de~beurre~obtenu} \frac{\text{----------------------}}{\text{poids de beurre théorique}} \times 100 \text{ est de l'ordre de 88\%}.
\]

Le poids de beurre théorique est calculé en supposant que le taux d'incorporation de la matière grasse de la crème dans le beurre est de 100\% sachant que la composition légale du beurre est la suivante:

- matière grasse 82\%
- eau 16\%
- extrait sec dégraissé 2\%.

Le lot de beurre obtenu possède un taux de cholestérol total de l'ordre de 0,17\% en poids.

La méthode de dosage du cholestérol total employée est la chromatographie en couche mince sur gel de silice 60, avec dépôt direct d'échantillon de beurre solubilisé et préalablement traité par méthanolysie en milieu acide. La révélation est réalisée à l'aide d'un réactif à la vanilline en présence d'acide orthophosphorique. Un dosage colorimétrique sur photodensitomètre est ensuite effectué.

EXEMPLE II.

Fabrication de beurre par mise en œuvre du procédé conforme à l'invention par barattage et sans maturation de la crème.

Le produit de départ utilisé est, comme dans l'exemple I, de la crème industrielle pasteurisée à 40\% de matière grasse, non maturée, et contenant du cholestérol à un taux de 0,13\% en poids.

Conformément à l'invention, on introduit directement dans cette crème 10 g, soit 8,3\% en poids par rapport à la matière grasse, de bêta-cyclodextrine pulvérulente à
teneur en eau comprise entre 13 et 14% et commercialisée par la Société Demanderesse sous la dénomination de KLEPTOSE®. Le milieu ainsi obtenu est alors homogénéisé dans des conditions d'agitation modérée, pendant une demi-heure, à une température égale à la température de barattage, soit 10°C en été et 13°C en hiver.

La méthodologie mise en œuvre ensuite est strictement identique à celle décrite ci-avant pour l'exemple I.

Le rendement pondéral de fabrication du beurre constaté est de l'ordre de 90%.

L'addition de bêta-cyclodextrine n'a pas modifié la fabrication du beurre sur le plan quantitatif, ni sur le plan sensoriel.

Le lot de beurre fabriqué possède quant à lui un taux de cholestérol total de 0,045% en poids, ce qui représente une réduction de 73,5% par rapport au taux de cholestérol du beurre obtenu par le procédé traditionnel décrit dans l'exemple I.

EXEMPLE III

Fabrication de beurre par mise en œuvre d'un procédé traditionnel par barattage avec maturation de la crème.

Dans cet exemple, il est tout d'abord procédé à la maturation de 300 g de crème industrielle pasteurisée dont la teneur en matière grasse est de 40% en poids. Son taux de cholestérol est d'environ de 0,13% en poids (392 mg de cholestérol pour 300 g).

La maturation est réalisée par ensemencement à l'aide de lait riche en levains lactiques à la dose de 2% par rapport à la matière grasse de la crème et fermentation sans agitation durant 16 heures à 30°C.

Les levains lactiques ont été obtenus au préalable par ensemencement en ferment lactiques lyophilisés (0,70 g, Laboratoires G. Roger - 77260 La Ferté-sous-Jouarre) d'un litre de lait entier stérilisé UHT et par fermentation sans agitation durant 24 heures à 30°C.
La crème maturée jusqu'à un pH de l'ordre de 5 est ensuite soumise aux étapes traditionnelles décrites ci-avant de barattage, malaxage et lavage.

Le rendement pondéral de fabrication du beurre obtenu est de l'ordre de 90%. Il est semblable à celui constaté pour le procédé utilisant la crème non maturée comme produit de départ.

Le taux de cholestérol de ce beurre est d'environ 0,17% en poids.

EXEMPLE IV

Fabrication de beurre par mise en oeuvre du procédé conforme à l'invention par barattage et avec maturation de la crème.

La maturation jusqu'à un pH de 5, l'addition de bêta-cyclodextrine et les opérations finales de fabrication sont réalisées dans les mêmes conditions que celles décrites dans les exemples précédents.

On utilise au départ 300 g de crème pasteurisée industrielle, identique à celle employée dans l'exemple III.

Le rendement pondéral de fabrication du beurre est de l'ordre de 86%, ce qui correspond sensiblement à celui mentionné dans l'exemple III décrivant le procédé traditionnel sans ajout de bêta-cyclodextrine.

Le taux de cholestérol libre du beurre obtenu est d'environ 0,051% en poids. La réduction de 70% du taux de cholestérol présent dans le beurre par rapport à celui mesuré dans le beurre obtenu par mise en oeuvre du procédé de l'exemple III, est du même ordre que celle constatée dans les exemples comparatifs I et II.

Ces exemples mettent en évidence les performances advantageuses du procédé conforme à l'invention dans deux de ces modes de mise en oeuvre.

Il apparaît ainsi que ce procédé permet l'obtention de façon reproductible, de beurre qui, d'une part est de quantité et de qualité comparables à celles de beurre
obtenu par les procédés classiques, et qui d'autre part, présente une teneur extrêmement réduite en cholestérol.

Il va de soi que le procédé selon l’invention peut être appliqué à toutes les techniques connues de fabrication de beurre qu’elles soient du type par barattage discontinu ou continu (procédé Fritz), ou bien encore du type à double centrifugation comme selon les procédés ALFA ou GOLDEN FLOW.

EXEMPLE V

Influence de la teneur en béta-cyclodextrine dans la crème sur le rendement d’extraction du cholestérol du beurre fabriqué dans les mêmes conditions que celles de l’exemple IV.

Le tableau I annexé (planché 1/1) regroupe les différents résultats obtenus pour des concentrations croissantes en béta-cyclodextrine pulvérulente, commercialisée sous la marque déposée KLEPTOSE® par la Société ROQUETTE FRERES et contenant 13 à 14% d’eau. Le rendement d’extraction du cholestérol est calculé de la manière suivante:

\[R = \frac{100 - \text{Taux de cholestérol en \% en poids dans le beurre pour une concentration de } X \% \text{ de } \beta\text{-cyclodextrine}}{\text{Taux de cholestérol en \% en poids dans le beurre sans ajout de } \beta\text{-cyclodextrine}} \times 100 \]

* X est donné en pourcentage en poids par rapport à la matière grasse de la crème.

Ce tableau prouve que la diminution du cholestérol du beurre est directement dépendante de la quantité de béta-cyclodextrine KLEPTOSE® ajoutée à la crème.

EXEMPLE VI

Fabrication de matière grasse laitière anhydre (M.G.L.A.) à teneur réduite en cholestérol selon une technique indirecte à partir de cholestérol obtenu par mise en oeuvre du procédé conforme à l'invention (Exemples II, IV et V).

Dans cette technique indirecte, le beurre de l'exemple II à teneur réduite en cholestérol est tout d'abord mis en fusion par chauffage à une température
inférieure à 80°C, de l'ordre de 65°C. Il subit ensuite une opération telle que la double centrifugation complétée par un lavage à l'eau de manière à séparer la phase non grasse de la phase grasse ou huile de beurre. Cette dernière est soumise à une dessiccation sous vide de façon à éliminer l'eau résiduelle jusqu'à l'amener à une concentration inférieure à 0,2% en poids. La M.G.L.A. ainsi obtenue est très appauvrie en cholestérol.

EXEMPLE VII

Fabrication de matière grasse laitière anhydre (M.G.L.A.) à teneur réduite en cholestérol selon une technique directe.

Dans la technique directe, la crème de lait est employée comme produit de départ. Après mélange de celle-ci avec la cyclodextrine, l'inversion de l'émulsion est réalisée mécaniquement à l'aide d'appareils connus en soi du type homogénéisateur, "clarificateur" ou autres. L'huile de beurre obtenue après séparation d'une grande partie de la phase aqueuse, est portée à une température de l'ordre de 60°C pour un lavage à l'eau chaude puis est finalement séchée sous vide pour atteindre une teneur en eau de 0,20% en poids. Le taux de cholestérol de la matière grasse laitière anhydre ainsi fabriquée est très fortement réduit.

Le beurre et la matière grasse laitière anhydre, appauvris en cholestérol et obtenus par les techniques décrites dans les exemples précédents peuvent être naturellement consommés tels quels ou bien employés comme ingrédients alimentaires dans différents produits tels que les pâtisseries, les crèmes glacées, les crèmes desserts, les laits ou les fromages reconstitués, les pâtes à tartiner, les crèmes du type "Coffee Whiteners", ou autres.
REVENDICATIONS

1. Procédé de fabrication de produits laitiers à
teneur réduite en stérols et notamment en cholestérol,
caractérisé en ce que le produit de départ utilisé est
composé au moins en partie de crème de lait et se présente
sous forme d'une émulsion huile dans eau, et en ce qu'il
consiste essentiellement à :
- mettre en contact avec le produit de départ une quan-
tité de cyclodextrine suffisante pour former des com-
plexes d'inclusion avec les stérols présents dans la
matière grasse, de manière à les rendre extractibles ;
- inverser l'émulsion huile dans eau de départ en émul-
sion eau dans huile ;
- extraire en tout ou partie les complexes formés .

2. Procédé selon la revendication 1 caractérisé
en ce que la teneur en matière grasse de la crème de lait
utilisée est comprise entre 10 et 70% en poids et de pré-
férence entre 35 et 45% en poids .

3. Procédé selon la revendication 1 ou la reven-
dication 2, caractérisé en ce qu'il est appliqué à la
fabrication du beurre .

4. Procédé selon l'une quelconque des revendica-
tions 1 à 3, caractérisé en ce qu'il est appliqué à la
fabrication de matière grasse laitière anhydre (M.G.L.A.) .

5. Procédé selon la revendication 4 dans lequel
la crème de lait est utilisée comme produit de départ , ca-
ractérisé en ce que l'inversion d'émulsion qu'il comprend
est réalisée à l'aide d'appareils permettant d'obtenir,
après séparation d'une grande partie de la phase aqueuse,
de l'huile de beurre, et en ce que cette dernière est
finalement soumise à un séchage éventuellement précédé
d'un lavage à l'eau .

6. Procédé selon l'une quelconque des revendica-
tions 1 à 5, caractérisé en ce que la cyclodextrine
employée est du type alpha, bêta ou gamma, substituée ou
non .
7. Procédé selon la revendication 6, caractérisé en ce que la cyclodextrine est sous forme polymérisée.

8. Procédé selon la revendication 6 ou la revendication 7, caractérisé en ce que la cyclodextrine considérée est du type bêta.

9. Procédé selon la revendication 8 caractérisé en ce que la dose d'utilisation de cette cyclodextrine est de 0,01 à 25% en poids par rapport à la matière grasse de la crème.

10. Procédé selon l'une quelconque des revendications 2, 3 et 6 à 9, caractérisé en ce qu'il comprend successivement :
- éventuellement une étape de traitement thermique de la crème du type pasteurisation ou stérilisation UHT,
- éventuellement une étape de maturation,
- une étape d'inversion d'émulsion conduisant à la formation de beurre et de babeurre,
- une étape de malaxage de la masse de beurre, de préférence associée à un lavage à l'eau, de manière à séparer le beurre du babeurre,

et en ce que la cyclodextrine est ajoutée à la crème à un moment quelconque avant l'inversion d'émulsion.

11. Procédé selon la revendication 10 caractérisé en ce que l'inversion d'émulsion est engendrée par un barattage, c'est-à-dire une agitation mécanique, effectuée à température constante et contrôlée.

12. Procédé selon la revendication 10 et la revendication 11 caractérisé en ce qu'il consiste à ajouter la cyclodextrine à la crème à raison d'une concentration comprise de préférence entre 0,5 et 18% en poids, et plus préférentiellement encore entre 1 à 10% en poids par rapport à la matière grasse, à agiter modérément ladite crème pendant au moins quelques secondes et de préférence au moins 120 secondes, à une température correspondant sensiblement à la température de barattage.
13. Procédé selon l'une quelconque des revendications 10 à 12 caractérisé en ce qu'il comporte une étape de maturation de la crème consistant à ensemencer celle-ci avec des levains lactiques acidifiants et aromatisants de manière à l'amener à une valeur de pH optimale et à la charger en arômes alimentaires appropriés.

14. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il comprend une étape de maturation de la crème dite "physique" consistant en un stockage à une température comprise entre 4 et 8°C pendant plusieurs heures et en ce qu'au cours du malaxage la masse de beurre est ensemencée par un mélange de ferment lactiques aromatisants et d'un concentré de culture acide.

15. Procédé selon la revendication 4 caractérisé en ce qu'il consiste essentiellement à mettre en fusion le beurre obtenu selon l'une quelconque des revendications 1 à 3 et 6 à 14, à séparer la phase grasse de la phase aqueuse par un moyen du type double centrifugation, puis à évaporer de préférence sous vide l'eau résiduelle de la phase grasse de manière à amener la teneur en eau à une valeur inférieure à 0,2% en poids.
<table>
<thead>
<tr>
<th>Concentration en β-cyclodextrine (g)</th>
<th>Quantité de beurre (g)</th>
<th>Rendement de fabrication (% en poids)</th>
<th>Rendement extraction cholestérol (% en poids/beurre)</th>
<th>Taux de cholestérol dans le beurre (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>88</td>
<td>0,18</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>128</td>
<td>146</td>
<td>229</td>
<td>0,135</td>
</tr>
<tr>
<td>5</td>
<td>4.16</td>
<td>146</td>
<td>172</td>
<td>0,10</td>
</tr>
<tr>
<td>10</td>
<td>8,33</td>
<td>146</td>
<td>133</td>
<td>0,053</td>
</tr>
</tbody>
</table>

TABLEAU I
AVIS DOCUMENTAIRE

OBJET DE L'AVIS DOCUMENTAIRE

- Conférant à son titulaire le droit exclusif d'exploiter l'invention, le brevet constitue pour les tiers, une importante exception à la liberté d'entreprendre. C'est la raison pour laquelle la loi prévoit qu'un brevet n'est valable que s'il existe des conditions de l'invention :
 * est "nouvelle", c'est-à-dire n'a pas été rendue publique en quelque lieu que ce soit, avant sa date de dépôt,
 * implique une "activité inventive", c'est-à-dire dépasse le cadre de ce qui aurait été évident pour un homme du métier.

- L'Institut n'est pas habilité, sauf absence manifeste de nouveauté, à refuser un brevet pour une invention ne répondant pas aux conditions ci-dessus. C'est aux tribunaux qu'il appartient d'en prononcer la nullité à la demande de toute personne intéressée, par exemple à l'occasion d'une action en contrefaçon.

CONDITIONS D'ETABLISSEMENT DU PRESENT AVIS

- Il a été établi sur la base des "revendications" dont la fonction est de définir les points sur lesquels l'inventeur estime avoir fait œuvre inventive et entend en conséquence être protégé.

- Il a été établi à l'issue d'une procédure contradictoire (1) au cours de laquelle :
 - le résultat d'une recherche d'antériorités effectuée parmi les brevets et autres publications a été notifié au demandeur et rendu public,
 - les tiers ont présenté des observations visant à compléter le résultat de la recherche,
 - le demandeur a modifié les revendications pour tenir compte du résultat de cette recherche,
 - le demandeur a modifié la description pour en éliminer les éléments qui n'étaient plus en concorde avec les nouvelles revendications.

- Le demandeur a présenté des observations pour justifier sa position.

EXAMEN DES ANTERIORITES

- Cet examen n'a pas été nécessaire, car aucun brevet ou autre publication n'a été relevé en cours de procédure.

- Les brevets et autres publications (1), ci-après, cités en cours de procédure, n'ont pas été examinés car pour être efficace, cet examen suppose au préalable une vérification des priorités (2):

- Les brevets et autres publications (1) ci-après, cités en cours de procédure, n'ont pas été retenus comme antériorités :

 EP-A-0 256 911
 US-A-3 491 132
 DE-A-2 652 558
 PATENT ABSTRACTS OF JAPAN, vol. 6, n° 114 (C-110)(992), 25 juin 1982 ; &

CONCLUSION : EN L'ETAT, AUCUNE ANTERIORITE N'A ETÉ RETENUE

(1) - Les pièces du dossier, ainsi que les brevets et autres publications cités, peuvent être consultées à l'INPI ou délivrés en copie.

(2) - Tout renseignement peut être obtenu de l'INPI : demander l'aide-mémoire "Intercautais et interférences".