NOTE DE SYNTHESE SUR L'ESSAI
MANGORO n° XXXIV

FERTILISATION N.P.K. D'EUCALYPTUS 12 ABL.

D. LOUPPE
Avril 1981.
NOTES DE SYNTHESE SUR L'ESSAI
MANGRO N° XXXIV

FERTILISATION N.P.K. D'EUCALYPTUS 12 ABL.

2. INTRODUCTION

Cette note a pour but de faire le point d'un essai de fertilisation d'Eucalyptus à la plantation (essai factoriel NPK.)

De cet essai, jeune encore, nous n'avons que des mesures en hauteur, effectuées annuellement jusqu'à l'âge de 5 ans. À cette date, nous disposons également des mesures de circonférence.

I. CONDITIONS DE L'ESSAI

11- LOCALISATION

12- PEDOLOGIE

Terrain plat.

Sol développé sur des couches de matériaux grossiers déposées par l'Ankona.
Le sol est de type ferrallitique fortement désaturé, lessivé, hydromorphe formé sur alluvions fluviatiles relativement récentes.

A titre indicatif, voici l'analyse chimique du profil n°30 (Bouchard - Le Buane 1967) proche de l'essai.

<table>
<thead>
<tr>
<th>n° de l'échantillon</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur</td>
<td>0 - 20</td>
<td>20 - 90</td>
</tr>
<tr>
<td>pH</td>
<td>4,7</td>
<td>4,6</td>
</tr>
<tr>
<td>Humidité % à pF 2</td>
<td>10,58</td>
<td>5,92</td>
</tr>
<tr>
<td>-"-' à pF 4,2</td>
<td>8,10</td>
<td>4,11</td>
</tr>
<tr>
<td>Eau disponible %</td>
<td>2,48</td>
<td>1,81</td>
</tr>
</tbody>
</table>

GRANULOMETRIE

Sable grossier %	73,66	73,70
Sable fin %	10,59	14,55
Sable très fin %	1,70	4,18
Limon %	4,50	7,00
Argile %	3,50	4,50

ELEMENTS ORGANIQUES

C %	2,50	0,22
Matière organique %	4,31	0,37
N %	1,20	0,20
C/N	20,8	11,0

COMPLEXE ABSORBANT

Acide phosphorique assimilable %	0,014	0,012
Ca échangeable m.e. %	0,06	0,28
Mg "-'-	0,13	0,20
K "-'-	0,04	0,09
Na "-'-	0,01	0,02
Somme des bases échangeables %	0,24	0,59
Capacité d'échange %	0,50	4,90
Degré de saturation %	48,00	12,04
Instabilité structurale %	0,19	1,27

La texture du sol est grossière. Seul l'horizon superficiel est bien pourvu en matière organique et en azote (le rapport C/N est cependant assez élevé).
Le sol est très acide = pH 4,6
La teneur en nitrate phytosynthétique est insignifiante 0,015 % (TKNO₃)
Le sol est pauvre en bases échangeables.
La capacité d'échange est très faible.

13. CLIMATOLOGIE

Le tableau ci dessous rassemble les pluviométries mensuelles depuis la mise en place de l'essai.

<table>
<thead>
<tr>
<th>Année</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>Déc</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>K</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975-76</td>
<td>249</td>
<td>133</td>
<td>211,6</td>
<td>160</td>
<td>161</td>
<td>00481,8</td>
<td>260,3</td>
<td>167,5</td>
<td>46,3</td>
<td>120,1</td>
<td>53,9</td>
<td>117,7</td>
</tr>
<tr>
<td>1976-77</td>
<td>295</td>
<td>224</td>
<td>4,6</td>
<td>52,9</td>
<td>144,4</td>
<td>442,4</td>
<td>262,0</td>
<td>148,7</td>
<td>211,0</td>
<td>41,6</td>
<td>9,3</td>
<td>122,4</td>
</tr>
<tr>
<td>1977-78</td>
<td>153</td>
<td>315</td>
<td>18,6</td>
<td>133,6</td>
<td>56,0</td>
<td>97,0</td>
<td>184,8</td>
<td>223,8</td>
<td>124,2</td>
<td>83,0</td>
<td>19,9</td>
<td>33,8</td>
</tr>
<tr>
<td>1978-79</td>
<td>576</td>
<td>120</td>
<td>10,4</td>
<td>26,9</td>
<td>119,9</td>
<td>117,6</td>
<td>144,9</td>
<td>251,1</td>
<td>94,8</td>
<td>25,6</td>
<td>48,1</td>
<td>121,5</td>
</tr>
<tr>
<td>1979-80</td>
<td>578</td>
<td>43,4</td>
<td>13,6</td>
<td>7,9</td>
<td>158,5</td>
<td>256,2</td>
<td>362,2</td>
<td>189,4</td>
<td>311,1</td>
<td>26,2</td>
<td>26,1</td>
<td>16,3</td>
</tr>
</tbody>
</table>

Moyenne 37,0 28,5 11,8 47,5 128,0 280,4 242,8 263,8 157,5 99,3 31,5 21,1 1309,1

Cette période est relativement sèche = la moyenne des précipitations observées de 1969 à 1976 à la même station est de 1653,7 mm et la moyenne 1927-67 à Moramanga (+ 25 Km au Sud de l'essai) est de 1529,2 mm.

14. DISPOSITIF EXPERIMENTAL

- Le plan de l'essai est présenté ci-après.
- Espèce test = Eucalyptus 12 AEL
- Le dispositif expérimental consiste en un essai factoriel NPK à 4 répétitions en blocs complets entièrement randomisés.
- Parcels carrées de 25 x 25m comprenant 64 plants à 3 x 3m.
 1 ligne de bordure par parcelle.
- Les doses d'engrais par plant sont :
 - pour l'Azote = 30 g. d'Ammonitrate
 - le phosphate = 50 g. de Supertriple et
 - 100 g. d'Hyperphosphate
 - la potasse = 50 g. de Sulfate de potasse
- Application de l'engrais au trou de plantation 1 à 2 jours avant la mise en place des plants.
Travail du sol: Trouaison puis sarclage.

Densité de Plantation: 3 x 3 = 9 plants/Ha.

Nombre de Plants: 8 x 8 plants = 64 plants/Par.

Nombre total de Plants: 2048 plants.

Traitements (au trou de plantation):

N: 30g. Ammoniatriate.

P: 50g. Supertriple.

K: 100g. Hyperphosphate.

Fertilisation: le 28 Avril 75.

Plantation: 29, 30 Avril 75.

Blocs III et IV: Boulettes.

Blocs I et II: Tubes moyens gaine plastique coupée longitudinalement.

D. R. F. P.
PROGRAMME SYLVICULTURE.

ESSAI N°34 MANGORO FERTILISATION NPK.
EUCALYPTUS 12 ABL.

Par	Dessin de	Date	N°
C. Malvios Rakotoniary E. | 30-4-75 | 114
21.- Mortalité.

211.- à la plantation.

Le tableau ci-dessous présente les résultats des comptages, avant remplacement, à l'âge de deux mois.

<table>
<thead>
<tr>
<th>Traitem.</th>
<th>Tubes</th>
<th>Traitem.</th>
<th>Boulettes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bloc I</td>
<td>Bloc II</td>
<td>Total</td>
<td>Bloc I</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>NK</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>NP</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>PK</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>NPK</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

| Total | 3 | 6 | 9 | 20 | 17 | 37 |
|% | 1,0 | | | 4,1 | | |

Aucune influence de l'engrais sur la mortalité ne semble pouvoir être mise en évidence à cet âge.

La mortalité est un peu plus importante avec la plantation en boulettes mais reste cependant très faible.

Les regarnissages ont été faits le 24 Juin 1975.
Le tableau ci-après donne le comptage des plants morts à l'âge de 14 mois (Juin 1976).

<table>
<thead>
<tr>
<th>Traitements</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>T</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>3,1</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>19</td>
<td>10</td>
<td>5</td>
<td>64</td>
<td>25,0</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1,6</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>3,5</td>
</tr>
<tr>
<td>NP</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1,6</td>
</tr>
<tr>
<td>NK</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>22</td>
<td>8,6</td>
</tr>
<tr>
<td>PK</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2,3</td>
</tr>
<tr>
<td>NPK</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>3,9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>37</td>
<td>25</td>
<td>15</td>
<td>127</td>
<td>7,1</td>
</tr>
</tbody>
</table>

Il apparaît très nettement une influence défavorable de l'azote apporté seul = 25 % de mortalité.

La mortalité évolue dans le temps mais de façon uniforme pour tous les traitements comme le montre le tableau ci-dessous.
Tableau d'analyse de la variance

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>SCE</th>
<th>ddl</th>
<th>CM</th>
<th>F obs.</th>
<th>F 0,95</th>
<th>F 0,99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitement</td>
<td>1244,2</td>
<td>7</td>
<td>177,7</td>
<td>7,02 **</td>
<td>2,50</td>
<td>3,65</td>
</tr>
<tr>
<td>Blocs</td>
<td>718,0</td>
<td>3</td>
<td>239,3</td>
<td>9,44 **</td>
<td>3,08</td>
<td>4,88</td>
</tr>
<tr>
<td>Erreur</td>
<td>532,1</td>
<td>21</td>
<td>25,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2494,3</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 5,8 %
ppds = 7,4 %

Seul l'effet dépressif de l'azote se marque statistiquement.
II. Croissance en hauteur.

Le tableau ci-dessous résume l'évolution de la hauteur moyenne (en cm) des arbres vivants au cours de l'essai.

<table>
<thead>
<tr>
<th>Traitements</th>
<th>Âges (Années)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td>104</td>
<td>252</td>
<td>368</td>
<td>539</td>
<td>667</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>50</td>
<td>270</td>
<td>510</td>
<td>656</td>
<td>720</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>120</td>
<td>257</td>
<td>422</td>
<td>559</td>
<td>684</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>94</td>
<td>239</td>
<td>407</td>
<td>556</td>
<td>704</td>
</tr>
<tr>
<td>NP</td>
<td></td>
<td>165</td>
<td>355</td>
<td>532</td>
<td>670</td>
<td>805</td>
</tr>
<tr>
<td>MK</td>
<td></td>
<td>115</td>
<td>270</td>
<td>456</td>
<td>607</td>
<td>727</td>
</tr>
<tr>
<td>PK</td>
<td></td>
<td>121</td>
<td>262</td>
<td>439</td>
<td>596</td>
<td>745</td>
</tr>
<tr>
<td>MPK</td>
<td></td>
<td>151</td>
<td>317</td>
<td>499</td>
<td>657</td>
<td>803</td>
</tr>
</tbody>
</table>

Ces valeurs donnent un aperçu de la croissance individuelle des arbres mais non de l'ensemble des traitements puisque nous avons pu constater au paragraphe précédent que l'engrais avait une influence sur la mortalité (l'azote tout au moins).

Pour faire intervenir ce facteur mortalité dans les analyses, nous utiliserons donc la hauteur moyenne pondérée par le taux de survie :

\[
\text{Hauteur moyenne x taux de survie} = \frac{\text{Hauteur moyenne}}{100}
\]
ESSAI MANGORO N°34.
Factoriel NPK sur Eucalyptus 12 ABL
Evolution des Hauteurs pondérées.

Pondérées par le taux de survie.
L'analyse de la variance, nous donne, à 14 mois les conclusions suivantes :

- les différences entre blocs sont significatives
- les différences entre engrais sont très hautement significatives = **ppds** = 23,15 cm.

<table>
<thead>
<tr>
<th>Engrais</th>
<th>NP</th>
<th>NPK</th>
<th>P</th>
<th>PK</th>
<th>NK</th>
<th>T</th>
<th>K</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteurs</td>
<td>166</td>
<td>145</td>
<td>118</td>
<td>118</td>
<td>105</td>
<td>101</td>
<td>91</td>
<td>59</td>
</tr>
</tbody>
</table>

Les fertilisations **NP** et **NPK** montrent un effet starter très net.

L'apport d'azote par contre est très fortement dépressif sur la croissance et la reprise du pin.

Il apparaît intéressant de dégager les interactions entre les différents éléments fertilisants. Ce qui est possible par les comparaisons orthogonales en utilisant les coefficients suivants :

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>NP</th>
<th>NK</th>
<th>PK</th>
<th>NPK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effet N</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Effet P</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Effet K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP</td>
<td>NK</td>
<td>PK</td>
<td>NPK</td>
</tr>
<tr>
<td>NP</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>NK</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>PK</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NPK</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
L'effet P est très hautement significatif.
L'effet N est significatif et K n'a aucun effet.

Les interactions NP et NPK sont hautement significatives, l'interaction PK est significative.

Il apparaît donc, et le fait est très intéressant que N seul a un effet dépressif nettement marqué, par contre appliqué avec du Phosphore ou les engrais phospho-potassiques, il a un effet de synergisme appréciable.

La potasse seule ou appliquée avec de l'Azote ne montre aucun effet.
ESSAIS N° 2887

FACTEURIEL NPK sur Euc. 12 A2G

Hauteur à deux ans (Mai 1977)

<table>
<thead>
<tr>
<th>Traitements</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>T</th>
<th>m</th>
<th>F^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>179</td>
<td>173</td>
<td>305</td>
<td>278</td>
<td>935</td>
<td>234</td>
<td>34,21</td>
</tr>
<tr>
<td>N</td>
<td>179</td>
<td>142</td>
<td>274</td>
<td>196</td>
<td>661</td>
<td>165</td>
<td>17,87</td>
</tr>
<tr>
<td>P</td>
<td>235</td>
<td>277</td>
<td>269</td>
<td>204</td>
<td>571</td>
<td>243</td>
<td>8,55</td>
</tr>
<tr>
<td>K</td>
<td>203</td>
<td>205</td>
<td>267</td>
<td>233</td>
<td>968</td>
<td>227</td>
<td>6,74</td>
</tr>
<tr>
<td>NP</td>
<td>326</td>
<td>316</td>
<td>304</td>
<td>358</td>
<td>1596</td>
<td>349</td>
<td>8,99</td>
</tr>
<tr>
<td>NK</td>
<td>225</td>
<td>256</td>
<td>296</td>
<td>206</td>
<td>983</td>
<td>246</td>
<td>11,60</td>
</tr>
<tr>
<td>PK</td>
<td>233</td>
<td>220</td>
<td>294</td>
<td>245</td>
<td>992</td>
<td>248</td>
<td>7,84</td>
</tr>
<tr>
<td>NPK</td>
<td>296</td>
<td>292</td>
<td>306</td>
<td>326</td>
<td>1214</td>
<td>304</td>
<td>11,7</td>
</tr>
<tr>
<td>Total</td>
<td>1796</td>
<td>1879</td>
<td>2345</td>
<td>2040</td>
<td>8060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>225</td>
<td>235</td>
<td>293</td>
<td>255</td>
<td>252</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Hauteurs pondérées par le taux de survie.

TABLEAU D'ANALYSE DE LA VARIANCE

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>SCE</th>
<th>ddl</th>
<th>CM</th>
<th>F_{obs}</th>
<th>$F_{0,95}$</th>
<th>$F_{0,99}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engrais</td>
<td>82792</td>
<td>7</td>
<td>11820</td>
<td>14,86 ***</td>
<td>2,50</td>
<td>3,65</td>
</tr>
<tr>
<td>Blocs</td>
<td>21998</td>
<td>3</td>
<td>7333</td>
<td>9,22 **</td>
<td>3,08</td>
<td>4,88</td>
</tr>
<tr>
<td>Erreur</td>
<td>16706</td>
<td>21</td>
<td>796</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>121446</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 11,2 %
ppds = 41,48 cm.
L'analyse de variance ci-dessous nous montre que:

Les différences entre blocs sont hautement significatives, celles entre engrais le sont très hautement à la pdpe 4,5%.

<table>
<thead>
<tr>
<th>Engrais</th>
<th>NP</th>
<th>NPK</th>
<th>PK</th>
<th>NK</th>
<th>P</th>
<th>T</th>
<th>X</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur</td>
<td>349</td>
<td>304</td>
<td>248</td>
<td>246</td>
<td>243</td>
<td>234</td>
<td>227</td>
<td>185</td>
</tr>
</tbody>
</table>

La fertilisation NP apparaît être la meilleure, suivie par NPK.

Se distingue également du témoin, par son effet dépressif; la fertilisation azotée.

La comparaison orthogonale confirme les résultats de la première année.

<table>
<thead>
<tr>
<th>Origine des variations</th>
<th>SCE</th>
<th>ddl</th>
<th>CH.</th>
<th>F obs.</th>
<th>F 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocs</td>
<td>21998</td>
<td>3</td>
<td>7333</td>
<td>9,22 **</td>
<td>3,08</td>
</tr>
<tr>
<td>Effet N</td>
<td>6272</td>
<td>1</td>
<td>6272</td>
<td>7,88 *</td>
<td>4,33</td>
</tr>
<tr>
<td>" P</td>
<td>36856</td>
<td>1</td>
<td>36856</td>
<td>46,33 ***</td>
<td></td>
</tr>
<tr>
<td>" K</td>
<td>561</td>
<td>1</td>
<td>561</td>
<td>0,71</td>
<td></td>
</tr>
<tr>
<td>Inter NP</td>
<td>22366</td>
<td>1</td>
<td>22366</td>
<td>28,11 **</td>
<td></td>
</tr>
<tr>
<td>" NK</td>
<td>666</td>
<td>1</td>
<td>666</td>
<td>0,84</td>
<td></td>
</tr>
<tr>
<td>" PK</td>
<td>6498</td>
<td>1</td>
<td>6498</td>
<td>8,16 **</td>
<td></td>
</tr>
<tr>
<td>" NPK</td>
<td>9522</td>
<td>1</td>
<td>9522</td>
<td>11,97 **</td>
<td></td>
</tr>
<tr>
<td>Erreur</td>
<td>16706</td>
<td>21</td>
<td>795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>121446</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitement</td>
<td></td>
<td>Blocco I</td>
<td>Blocco II</td>
<td>Blocco III</td>
<td>Blocco IV</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tchézine</td>
<td>285</td>
<td>284</td>
<td>455</td>
<td>448</td>
<td>1520</td>
</tr>
<tr>
<td>N</td>
<td>182</td>
<td>257</td>
<td>373</td>
<td>314</td>
<td>1126</td>
</tr>
<tr>
<td>P</td>
<td>355</td>
<td>522</td>
<td>418</td>
<td>364</td>
<td>1659</td>
</tr>
<tr>
<td>K</td>
<td>313</td>
<td>360</td>
<td>415</td>
<td>421</td>
<td>1509</td>
</tr>
<tr>
<td>NP</td>
<td>483</td>
<td>481</td>
<td>589</td>
<td>543</td>
<td>2096</td>
</tr>
<tr>
<td>NK</td>
<td>382</td>
<td>403</td>
<td>495</td>
<td>353</td>
<td>1635</td>
</tr>
<tr>
<td>PK</td>
<td>381</td>
<td>372</td>
<td>483</td>
<td>420</td>
<td>1656</td>
</tr>
<tr>
<td>NPK</td>
<td>459</td>
<td>479</td>
<td>454</td>
<td>502</td>
<td>1894</td>
</tr>
<tr>
<td>Total</td>
<td>2844</td>
<td>3160</td>
<td>3726</td>
<td>3365</td>
<td>13095</td>
</tr>
<tr>
<td>Moyenne</td>
<td>356</td>
<td>395</td>
<td>466</td>
<td>421</td>
<td>13095</td>
</tr>
</tbody>
</table>

* Hauteurs pondérées par le taux de survie.

TABLEAU D'ANALYSE DE LA VARIANCE

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>SCE</th>
<th>ddl</th>
<th>CM</th>
<th>F obs</th>
<th>F 0.95</th>
<th>F 0.099</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engrais</td>
<td>142193</td>
<td>7</td>
<td>20313</td>
<td>7,25**</td>
<td>2,50</td>
<td>3,65</td>
</tr>
<tr>
<td>Blocco</td>
<td>51310</td>
<td>3</td>
<td>17103</td>
<td>6,11**</td>
<td>3,08</td>
<td>4,88</td>
</tr>
<tr>
<td>Erreur</td>
<td>58800</td>
<td>21</td>
<td>2800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>252303</td>
<td>31</td>
<td></td>
<td>C.V. = 12,9 %</td>
<td>ppds = 77,8 cm</td>
<td></td>
</tr>
</tbody>
</table>
L'analyse de la variance à trois ans montre que les différences entre blocs sont hautement significatives à la limite de 70 cm.

<table>
<thead>
<tr>
<th>Engrais</th>
<th>NP</th>
<th>NPK</th>
<th>P</th>
<th>PK</th>
<th>NK</th>
<th>T</th>
<th>K</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur</td>
<td>524</td>
<td>474</td>
<td>415</td>
<td>424</td>
<td>409</td>
<td>320</td>
<td>377</td>
<td>282</td>
</tr>
</tbody>
</table>

Les fertilisations NP et NPK continuent à montrer le meilleur effet, l'azote reste également dépressif s'il est appliqué seul.

Les comparaisons orthogonales permettent l'analyse de la variance suivante :

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>SCE</th>
<th>ddl</th>
<th>CN</th>
<th>F obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocs</td>
<td>51310</td>
<td>3</td>
<td>17103</td>
<td>6,11 **</td>
</tr>
<tr>
<td>N</td>
<td>5177</td>
<td>1</td>
<td></td>
<td>1,85</td>
</tr>
<tr>
<td>P</td>
<td>71726</td>
<td>1</td>
<td></td>
<td>25,62 ***</td>
</tr>
<tr>
<td>K</td>
<td>2683</td>
<td>1</td>
<td></td>
<td>0,96</td>
</tr>
<tr>
<td>NP</td>
<td>27789</td>
<td>1</td>
<td></td>
<td>9,92 **</td>
</tr>
<tr>
<td>NK</td>
<td>3320</td>
<td>1</td>
<td></td>
<td>1,15</td>
</tr>
<tr>
<td>PK</td>
<td>15444</td>
<td>1</td>
<td></td>
<td>5,51 *</td>
</tr>
<tr>
<td>NPK</td>
<td>16155</td>
<td>1</td>
<td></td>
<td>5,77 *</td>
</tr>
<tr>
<td>Erreur</td>
<td>58800</td>
<td>21</td>
<td>2800</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>252303</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A trois ans, nous constatons donc que les seuls effets perceptibles statistiquement sont ceux du phosphore seul ou combiné avec les autres éléments.
TABLEAU D'ANALYSE DE LA VARIANCE

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>SCE</th>
<th>ddl</th>
<th>CM</th>
<th>F obs</th>
<th>F 0.95</th>
<th>F 0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engrais</td>
<td>144674</td>
<td>7</td>
<td>20 668</td>
<td>5,03 **</td>
<td>2,50</td>
<td>3,65</td>
</tr>
<tr>
<td>Blocs</td>
<td>88482</td>
<td>1</td>
<td>31 494</td>
<td>7,18 **</td>
<td>3,08</td>
<td>4,88</td>
</tr>
<tr>
<td>Erreur</td>
<td>86299</td>
<td>211</td>
<td>4 109</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Total | 319455 | 311 | C V = 12,1 % | ppds = 94,3 cm

<table>
<thead>
<tr>
<th>Traitement</th>
<th>Blocs</th>
<th>T</th>
<th>n</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>350 376 547 604</td>
<td>2017</td>
<td>504</td>
<td>11,37</td>
</tr>
<tr>
<td>N</td>
<td>250 333 502 515</td>
<td>1600</td>
<td>400</td>
<td>12,55</td>
</tr>
<tr>
<td>P</td>
<td>457 542 534 479</td>
<td>2012</td>
<td>503</td>
<td>12,94</td>
</tr>
<tr>
<td>K</td>
<td>440 463 558 579</td>
<td>2040</td>
<td>510</td>
<td>5,54</td>
</tr>
<tr>
<td>NP</td>
<td>597 557 707 669</td>
<td>2530</td>
<td>633</td>
<td>3,46</td>
</tr>
<tr>
<td>NK</td>
<td>496 529 644 470</td>
<td>2139</td>
<td>535</td>
<td>4,18</td>
</tr>
<tr>
<td>PK</td>
<td>517 513 624 545</td>
<td>2199</td>
<td>550</td>
<td>1,99</td>
</tr>
<tr>
<td>NPK</td>
<td>602 616 561 665</td>
<td>2444</td>
<td>611</td>
<td>1,38</td>
</tr>
</tbody>
</table>

Total | 3749 3929 4777 4526 | 16981 | | |

Moyenne | 469 491 597 566 | 531 | | |

Note: CV = Coefficient de Variation, ppds = Profondeur de l'herbe
L'analyse de la variance à quatre ans contre toujours des blox et les traitements différents de façon hautement significative. Le ysc = 94 cm.

<table>
<thead>
<tr>
<th>Engrais</th>
<th>1</th>
<th>NP</th>
<th>NPK</th>
<th>PK</th>
<th>NK</th>
<th>K</th>
<th>T</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur</td>
<td>655</td>
<td>611</td>
<td>550</td>
<td>535</td>
<td>510</td>
<td>504</td>
<td>503</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

NP et NPK restent toujours différents du témoin ainsi que N, mais ce dernier à son désavantage.

Les comparaisons orthogonales donnent :

<table>
<thead>
<tr>
<th>Source de variations</th>
<th>SCE</th>
<th>ddl</th>
<th>C.M.</th>
<th>F obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blc.</td>
<td>88,482</td>
<td>3</td>
<td>-0.64</td>
<td>7,18 **</td>
</tr>
<tr>
<td>N</td>
<td>6 188</td>
<td>1</td>
<td></td>
<td>1,51</td>
</tr>
<tr>
<td>P</td>
<td>60 291</td>
<td>1</td>
<td></td>
<td>14,67 **</td>
</tr>
<tr>
<td>K</td>
<td>13 737</td>
<td>1</td>
<td></td>
<td>3,34</td>
</tr>
<tr>
<td>NP</td>
<td>36 518</td>
<td>1</td>
<td></td>
<td>8,89 **</td>
</tr>
<tr>
<td>NK</td>
<td>1 845</td>
<td>1</td>
<td></td>
<td>0,45</td>
</tr>
<tr>
<td>PK</td>
<td>6 644</td>
<td>1</td>
<td></td>
<td>1,62</td>
</tr>
<tr>
<td>NPK</td>
<td>19 454</td>
<td>1</td>
<td></td>
<td>4,73 *</td>
</tr>
<tr>
<td>Erreur</td>
<td>86 299</td>
<td>21</td>
<td>4,109</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>319 455</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seul le phosphore semble encore avoir une action : il y a encore interaction entre N et P et N - P et K mais plus entre P - K comme l'année précédente.
TÊTE D'ANTONCE n° 34

Ces 2 FACTOLES VENDS SUR 21,24 ACRE

Mesurées en juin 1980 - âge 5 ans 2 mois

Taille en cm - Surface terrière en dm²/ha

<table>
<thead>
<tr>
<th>Traitements</th>
<th>Blocs</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>T</td>
<td>m</td>
<td>J²</td>
</tr>
<tr>
<td>Témoin h</td>
<td>429</td>
<td>421</td>
<td>738</td>
<td>819</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>241</td>
<td>685</td>
<td>739</td>
<td>1983</td>
<td>476</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>254</td>
<td>408</td>
<td>641</td>
<td>471</td>
<td>1874</td>
<td>469</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>326</td>
<td>546</td>
<td>322</td>
<td>1436</td>
<td>372</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>604</td>
<td>599</td>
<td>676</td>
<td>593</td>
<td>2472</td>
<td>618</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>447</td>
<td>607</td>
<td>399</td>
<td>1869</td>
<td>467</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>507</td>
<td>564</td>
<td>642</td>
<td>729</td>
<td>2442</td>
<td>611</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>445</td>
<td>449</td>
<td>468</td>
<td>604</td>
<td>1957</td>
<td>489</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>557</td>
<td>606</td>
<td>857</td>
<td>865</td>
<td>2885</td>
<td>721</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>442</td>
<td>445</td>
<td>396</td>
<td>774</td>
<td>1563</td>
<td>641</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>590</td>
<td>630</td>
<td>718</td>
<td>586</td>
<td>2524</td>
<td>631</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>447</td>
<td>539</td>
<td>562</td>
<td>452</td>
<td>2000</td>
<td>500</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>683</td>
<td>628</td>
<td>774</td>
<td>668</td>
<td>2753</td>
<td>688</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>571</td>
<td>562</td>
<td>734</td>
<td>452</td>
<td>2319</td>
<td>580</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>724</td>
<td>687</td>
<td>706</td>
<td>805</td>
<td>2922</td>
<td>731</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>653</td>
<td>569</td>
<td>637</td>
<td>703</td>
<td>2562</td>
<td>641</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4448</td>
<td>4543</td>
<td>5752</td>
<td>5536</td>
<td>20279</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3510</td>
<td>3569</td>
<td>5135</td>
<td>4445</td>
<td>16699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne h</td>
<td>556</td>
<td>568</td>
<td>719</td>
<td>692</td>
<td>634</td>
<td></td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>439</td>
<td>446</td>
<td>642</td>
<td>556</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pour tenir compte de la mortalité, qui peut être une conséquence des engrais, nous multiplions la hauteur moyenne des arbres vivants par leur taux de survie.
Après cinq ans, nous avons toujours des blocs et des traitements qui diffèrent de façon hautement significative.

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>SCE</th>
<th>ddl</th>
<th>C.R</th>
<th>P obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocs</td>
<td>162362</td>
<td>3</td>
<td>56121</td>
<td>7.91 **</td>
</tr>
<tr>
<td>Engrais</td>
<td>196459</td>
<td>7</td>
<td>28036</td>
<td>3.25 **</td>
</tr>
<tr>
<td>N</td>
<td>536</td>
<td>1</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>99370</td>
<td>1</td>
<td>14.05 **</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>31438</td>
<td>1</td>
<td>4.43 *</td>
<td></td>
</tr>
<tr>
<td>NPK</td>
<td>33347</td>
<td>1</td>
<td>4.70 *</td>
<td></td>
</tr>
<tr>
<td>NK</td>
<td>4301</td>
<td>1</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>PK</td>
<td>4209</td>
<td>1</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>NPK</td>
<td>23059</td>
<td>1</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>Erreur</td>
<td>149036</td>
<td>21</td>
<td>7097</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>513856</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.V. = 13,2 % \[\text{ppds} = 124\text{cm}\]

Nous n'observons plus d'effet azote (autre que l'effet dépressif à la plantation), par contre, l'effet de la potasse commence à se marquer. L'effet phosphore est toujours très net et son interaction avec l'azote est encore perceptible au contraire de l'interaction NPK.
Les différences entre traitements sont presque significatives. (F 0,95 = 2,50 pour 7 - 21 ddl).

L'analyse ne permet donc pas de distinguer des différences entre engrais. Néanmoins le classement des traitements est le suivant.

<table>
<thead>
<tr>
<th>Traitement</th>
<th>NPK</th>
<th>NP</th>
<th>PK</th>
<th>NK</th>
<th>K</th>
<th>T</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST(dm²/ha.)</td>
<td>641</td>
<td>641</td>
<td>580</td>
<td>500</td>
<td>489</td>
<td>476</td>
<td>467</td>
<td>372</td>
</tr>
<tr>
<td>%</td>
<td>100</td>
<td>100</td>
<td>90,5</td>
<td>78,0</td>
<td>76,3</td>
<td>74,3</td>
<td>72,9</td>
<td>58,0</td>
</tr>
</tbody>
</table>

et les traitements NPK - NP et PK ressortent nettement.
Conclusion

Cet essai installé sur un sol très pauvre avec un Eucalyptus qui s'est révélé être très moyen dans l'essai 29 donne cependant des résultats intéressants.

- **Au niveau de la reprise.**

La plantation en tute semble assurer une meilleure reprise que la boulette (1% de mortalité contre 4,1% pour la boulette).

Après un an, on peut constater l'effet néfaste (25% de mortalité) de l'apport d'azote seul. L'apport d'azote simultanément à un ou plusieurs autres éléments n'a plus cet effet défavorable sur la reprise.

Après 5 ans on observe 10% de mortalité de plus chez les plants d'Eucalyptus.

- **Au niveau de la croissance en hauteur.**

En ce qui concerne la croissance individuelle (moyenne des arbres vivants) nous obtenons le classement suivant :

NP NPK PK NK K P O N.

En réalité, pour tenir compte de la mortalité importante affectant les parcelles N, nous avons utilisé pour les analyses les hauteurs pondérées par le taux de survie.

L'analyse orthogonale nous a permis de mettre en évidence les effets des divers éléments fertilisants et leur interactions.
Synthèse des résultats des comparaisons orthogonales

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>Age (Années)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HS</td>
<td>TH3</td>
<td>TH3</td>
<td>HS</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HS</td>
<td>HS</td>
<td>HS</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = Significatif
HS = Hautement significatif
TH3= Très hautement significatif.

Il apparaît que l'effet de l'azote se marque pendant les deux premières années puis disparaît bien que l'interaction NPK reste sensible jusqu'à l'âge de 4 ans et celle NP au-delà de 5 ans.

L'effet du phosphore est le plus net dès le début de l'essai et reste important encore après cinq ans. Les interactions de P avec les autres éléments nettement sensibles au départ ont tendance à s'amenuiser avec le temps. Ceci est très net pour PK, moins marqué pour NPK et léger pour NP.

Par contre, la potasse qui n'avait aucun effet durant les 4 premières années commence à devenir active en cinquième.

La potasse semblerait donc avoir un effet retard, quel est l'importance de celui-ci ? Il est nécessaire d'attendre pour en connaître l'évolution.
Actuellement, deux fertilisations sont équivalentes NP et NPK (bien que seule NPK diffère statistiquement du témoin à 5 %). Le choix de la meilleure dépend donc de l'évolution future de l'effet K.

- Au niveau des surfaces terrières.

L'analyse statistique ne met en évidence aucune différence entre essais. Néanmoins ressortent très nettement NPK - NP et PK qui montrent des surfaces terrières de 20 % et plus supérieures au témoin.