SYLVICULTURE DE L’ACACIA MANGIUM
EN BASSE CÔTE-D’IVOIRE

par Bernard Dupuy et N’Guessan Kangá
Ingénieurs de recherche
au C.T.F.T./Côte-d’Ivoire

SUMMARY

SYLVICULTURE OF ACACIA MANGIUM
IN LOWER CÔTE-D’IVOIRE

The tests carried out in evergreen forest on Acacia mangium plantations allowed to determine the forms of growth and yield capacity of this species. Provenance trials, spacing tests and planting in a large number of stations were followed over five years. A production model was established from study plots.

In the same way, a rehabilitation trial of littoral soils for the regeneration of old coconut palm groves was successfully implemented with the collaboration of the Institut de Recherches des Huiles et Oleagineux (Research Institute for Oil and Oleaginous Plants).

Keywords : reforestation, West Africa, Silviculture, Acacia.

RESUMEN

SILVICULTURA DE LA ACACIA MANGIUM
EN BAJA CÔTE-D’IVOIRE

Los ensayos llevados a cabo en bosque semprevirens sobre plantaciones de Acacia mangium han permitido definir las modalidades de crecimiento y de productividad de esta especie. Se han desarrollado, durante cinco años, diversos ensayos de procedencias así como de espaciamientos y de plantaciones multiespeciales. Un modelo de producción a partir de parcelas de ensayos ha sido establecido.

Del mismo modo, se ha llevado a cabo con todo éxito un ensayo de rehabilitación de los suelos litorales para la regeneración de antiguas plantaciones de coconuts, con la colaboración del Institut de Recherches des Huiles et Oleagineux (Instituto de Investigaciones de Aceites y Oleaginosas).

Términos clave : Repoblación forestal, África del Oeste, Silvicultura, Acacia.

L’Acacia mangium a été introduit vers 1980 en Côte-d’Ivoire. Ses fortes potentialités de croissance ont rapidement attiré l’attention des reboiseurs.

Testée avec succès sur de multiples stations, cette espèce peut dorénavant être proposée pour des actions de développement en zone de forêt dense humide. Elle a essentiellement une vocation bois-énergie.

L’approvisionnement en bois de feu des populations, conjugué à des méthodes culturales basées sur la culture itinérante sur brûlis, conduit à une rapide disparition des formations forestières. Par ailleurs, le raccourcissement régulier des jachères forestières traditionnellement pratiquées accélère la vitesse de disparition des forêts qui ne peuvent plus se reconstituer.

La rapidité de croissance de l’Acacia mangium, l’existence d’un système racinaire avec présence de rhyzobium pourrait permettre d’introduire cette espèce dans le cadre de jachères forestières artificielles en zone sempervirente.

24 Revue Bois et Forêts des Tropiques, n° 225, 3e trimestre 1990
COMPORTEMENT EN REBOISEMENT

L’*Acacia mangium* est une espèce à forte croissance initiale. En conditions moyennes, il atteint 5/6 m de hauteur à l’âge de 3 ans et une quinzaine de mètres à 5 ans.

Le premier test de provenances installé en 1984 a permis de mettre en évidence une grande variabilité de vigueur et de forme.

Tableau I

<table>
<thead>
<tr>
<th>Provenance</th>
<th>(\bar{C}) (cm)</th>
<th>% vivants</th>
<th>% tiges multiples</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Pedro (Côte-d’Ivoire)</td>
<td>39,3</td>
<td>96</td>
<td>15</td>
</tr>
<tr>
<td>Oriomo River (PNG)</td>
<td>39,2</td>
<td>87</td>
<td>25</td>
</tr>
<tr>
<td>Claudie River (QLD)</td>
<td>41,2</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>Broqua Pole Creek (QLD)</td>
<td>38,6</td>
<td>77</td>
<td>24</td>
</tr>
<tr>
<td>Ellerbeck (QLD)</td>
<td>39,3</td>
<td>66</td>
<td>23</td>
</tr>
<tr>
<td>Walsh’s Pyramid (QLD)</td>
<td>35,3</td>
<td>86</td>
<td>16</td>
</tr>
<tr>
<td>Mossman (QLD)</td>
<td>38,6</td>
<td>72</td>
<td>8</td>
</tr>
<tr>
<td>Piru Ceram (Indonésie)</td>
<td>33,4</td>
<td>57</td>
<td>44</td>
</tr>
<tr>
<td>Sidei (Indonésie)</td>
<td>26,3</td>
<td>59</td>
<td>31</td>
</tr>
</tbody>
</table>

Parmi les provenances testées, originaires d’Australie, d’Indonésie, de Papouasie Nouvelle-Guinée et de Côte-d’Ivoire, la provenance locale (San Pedro) se révèle être parmi les plus performantes.

Le caractère tige multiple est très variable.

A 3 ans, la productivité varie de 7 à 30 m³/ha/an selon les provenances testées pour une densité de plantation de 1 111 tiges/ha.

Dans certains cas, on observe des chablis vers l’âge de 2-3 ans. L’examen de ces derniers met l’existence d’un système racinaire pivotant puissant dont le pivot est mort.

Écartement à la plantation

Cette espèce a été plantée à plusieurs écartements. Quatre densités de plantations ont été notamment testées à l’Anguededou sur anciennes jachères agricoles.

Tableau II

<table>
<thead>
<tr>
<th>Écartement à la plantation</th>
<th>Age (années)</th>
<th>Circonférence moyenne (cm)</th>
<th>Volume (m³/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 m × 2,5 m</td>
<td>2</td>
<td>18,1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>28,0</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>32,6</td>
<td>95</td>
</tr>
<tr>
<td>3 m × 3 m</td>
<td>2</td>
<td>19,5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>29,8</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>34,8</td>
<td>92</td>
</tr>
<tr>
<td>3 m × 4 m</td>
<td>2</td>
<td>20,3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>32,7</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>40,8</td>
<td>93</td>
</tr>
<tr>
<td>4 m × 4 m</td>
<td>2</td>
<td>20,3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>34,6</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43,2</td>
<td>74</td>
</tr>
</tbody>
</table>

Dès l’âge de 3 ans, l’influence de l’écartement sur l’accroissement en circonférence est sensible pour les plantations les plus serrées. Pour un écartement de 3 × 3 m à la plantation, l’accroissement moyen sur le diamètre est de 3,1 cm/an. Pour les écartements les plus grands (4 m × 4 m), l’accroissement moyen sur le diamètre est de 3,7 cm/an.

Modèle de croissance

Un modèle de croissance a été élaboré pour l’*Acacia mangium* à partir de 60 placettes dont l’âge est compris entre 2 et 8 ans. L’écartement à la plantation est de 3 × 3 m. Quatre classes de fertilité ont été distinguées en fonction de la hauteur dominante.

Tableau III

<table>
<thead>
<tr>
<th>Classe de fertilité</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age d’exploitabilité (ans)</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Hauteur dominante (m)</td>
<td>23,1</td>
<td>21,6</td>
<td>19,4</td>
<td>16,5</td>
</tr>
<tr>
<td>Diamètre moyen (cm)</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Accroissement moyen en volume (m³/ha/an)</td>
<td>35</td>
<td>26</td>
<td>19</td>
<td>12</td>
</tr>
</tbody>
</table>

Les âges d’exploitabilité sont compris entre 6 et 9 ans. La productivité varie entre 110 m³/ha et 210 m³/ha pour un diamètre d’exploitabilité compris entre 15 cm et 18 cm.
Évolution de la hauteur dominante en fonction de l'âge pour différentes classes de fertilité.
CARTE DE LOCALISATION DES ESSAIS D'ACACIA MANGIUM
EN BASSE CÔTE-D'IVOIRE

GOLFE DE GUINEE

0 50 km

MODÈLE PROBABLE DE CROISSANCE MOYENNE DE L'ACACIA MANGIUM
Tableau IV
Modèle probable de croissance pour l’*Acacia mangium*

<table>
<thead>
<tr>
<th>Age (ans)</th>
<th>Densité (tiges/ha)</th>
<th>Ho (m)</th>
<th>Cg (cm)</th>
<th>G (m²/ha)</th>
<th>Volume (m³/ha)</th>
<th>Accroissement moyen (m³/ha/an)</th>
<th>courant (m³/ha/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 350</td>
<td>13,2</td>
<td>37,0</td>
<td>14,7</td>
<td>72</td>
<td>24,1</td>
<td>47,3</td>
</tr>
<tr>
<td>4</td>
<td>1 260</td>
<td>17,1</td>
<td>44,9</td>
<td>20,2</td>
<td>120</td>
<td>29,9</td>
<td>47,0</td>
</tr>
<tr>
<td>5</td>
<td>1 200</td>
<td>20,3</td>
<td>51,1</td>
<td>24,9</td>
<td>167</td>
<td>33,3</td>
<td>42,9</td>
</tr>
<tr>
<td>6</td>
<td>1 140</td>
<td>23,1</td>
<td>56,3</td>
<td>28,8</td>
<td>210</td>
<td>34,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 350</td>
<td>11,1</td>
<td>32,7</td>
<td>11,5</td>
<td>52</td>
<td>17,4</td>
<td>33,0</td>
</tr>
<tr>
<td>4</td>
<td>1 260</td>
<td>14,4</td>
<td>40,0</td>
<td>16,1</td>
<td>85</td>
<td>21,3</td>
<td>34,8</td>
</tr>
<tr>
<td>5</td>
<td>1 200</td>
<td>17,2</td>
<td>45,7</td>
<td>19,9</td>
<td>120</td>
<td>24,0</td>
<td>32,7</td>
</tr>
<tr>
<td>6</td>
<td>1 140</td>
<td>19,5</td>
<td>50,5</td>
<td>23,1</td>
<td>153</td>
<td>25,4</td>
<td>29,5</td>
</tr>
<tr>
<td>7</td>
<td>1 080</td>
<td>21,6</td>
<td>54,6</td>
<td>25,7</td>
<td>182</td>
<td>26,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 350</td>
<td>9,2</td>
<td>28,5</td>
<td>8,7</td>
<td>38</td>
<td>12,8</td>
<td>20,1</td>
</tr>
<tr>
<td>4</td>
<td>1 260</td>
<td>11,9</td>
<td>35,1</td>
<td>12,3</td>
<td>58</td>
<td>14,6</td>
<td>23,8</td>
</tr>
<tr>
<td>5</td>
<td>1 200</td>
<td>14,2</td>
<td>40,2</td>
<td>15,4</td>
<td>82</td>
<td>16,4</td>
<td>23,4</td>
</tr>
<tr>
<td>6</td>
<td>1 140</td>
<td>16,2</td>
<td>44,5</td>
<td>18,0</td>
<td>106</td>
<td>17,6</td>
<td>21,7</td>
</tr>
<tr>
<td>7</td>
<td>1 080</td>
<td>17,9</td>
<td>48,3</td>
<td>20,1</td>
<td>127</td>
<td>18,2</td>
<td>19,6</td>
</tr>
<tr>
<td>8</td>
<td>1 020</td>
<td>19,4</td>
<td>51,7</td>
<td>21,7</td>
<td>147</td>
<td>18,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 260</td>
<td>9,5</td>
<td>29,6</td>
<td>8,8</td>
<td>39</td>
<td>9,6</td>
<td>13,1</td>
</tr>
<tr>
<td>5</td>
<td>1 200</td>
<td>11,3</td>
<td>34,1</td>
<td>11,1</td>
<td>52</td>
<td>10,3</td>
<td>14,3</td>
</tr>
<tr>
<td>6</td>
<td>1 140</td>
<td>12,9</td>
<td>38,0</td>
<td>13,1</td>
<td>66</td>
<td>11,0</td>
<td>14,0</td>
</tr>
<tr>
<td>7</td>
<td>1 080</td>
<td>14,2</td>
<td>41,3</td>
<td>14,7</td>
<td>80</td>
<td>11,4</td>
<td>13,1</td>
</tr>
<tr>
<td>8</td>
<td>1 020</td>
<td>15,4</td>
<td>44,3</td>
<td>16,0</td>
<td>93</td>
<td>11,7</td>
<td>12,2</td>
</tr>
<tr>
<td>9</td>
<td>970</td>
<td>16,5</td>
<td>47,0</td>
<td>17,1</td>
<td>105</td>
<td>11,7</td>
<td></td>
</tr>
</tbody>
</table>

ÉTUDES SUR LE RECÉPAGE

L’objet de ces études est d’évaluer la capacité à rejeter de souches de l’*Acacia mangium* ainsi que les modalités optimales de recépage.

Différents aspects sont envisagés :
- la date de recépage,
- la hauteur de recépage,
- l’âge du recépage.

Date de recépage

Le peuplement étudié était âgé de deux ans. Le diamètre moyen des arbres était de 9 cm. Le recépage a été réalisé à 0,5 m de hauteur. En fonction du régime des pluies, quatre dates de recépage ont été testées.

- Fin de saison sèche (mars)
- Début de saison des pluies (juin)
- Milieu de saison des pluies (septembre)
- Début de saison sèche (décembre).

Il faut donc recéper en fin de saison sèche. Deux ans après le recépage, le nombre de rejets vivants varie de 3 à 7 selon les traitements ; ils atteignent 9 cm de diamètre moyen.
Tableau V
Évolution du % de souches vivantes en fonction de la date de recépage

<table>
<thead>
<tr>
<th>Délai après recépage</th>
<th>Mars</th>
<th>Juin</th>
<th>Septembre</th>
<th>Décembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mois</td>
<td>97 %</td>
<td>93 %</td>
<td>16 %</td>
<td>16 %</td>
</tr>
<tr>
<td>1,5 an</td>
<td>87 %</td>
<td>61 %</td>
<td>9 %</td>
<td>12 %</td>
</tr>
</tbody>
</table>

Hauteur de recépage
Trois hauteurs de recépage ont été essayées pour définir l’optimum de hauteur à préconiser :
- rez-terre
- 0,25 m
- 0,50 m.

Le peuplement recépé était âgé de 4 ans, avec un diamètre moyen de 11 cm et une densité de plantation de 1 600 tiges/ha.

Il a été recépé fin mars, soit en fin de saison sèche qui est la période la plus favorable pour le recépage.

Tableau VI
Évolution du % de souches vivantes en fonction de la hauteur de recépage

<table>
<thead>
<tr>
<th>Délai après recépage</th>
<th>rez-terre</th>
<th>0,25 m</th>
<th>0,50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mois</td>
<td>29 %</td>
<td>87 %</td>
<td>97 %</td>
</tr>
<tr>
<td>5 mois</td>
<td>3 %</td>
<td>46 %</td>
<td>62 %</td>
</tr>
</tbody>
</table>

Parcelle d’Acacia mangium recépée.

Il faut donc recéper à une hauteur d’au moins 0,25 m au-dessus du sol pour obtenir un taux de survie des souches acceptable.
ESSAIS D’ASSOCIATION COCOTIER/ACACIA MANGIUM

Des problèmes sont rencontrés pour régénérer les cocoteraies littorales caractérisées par des sols pauvres et dégradés.

Pour essayer de régénérer ces sols, des essais d’association Arbre forestier (Acacia mangium, Acacia auriculiformis, Albizia spp. Filao) ont été mis en place en collaboration avec l’IRHO.

Le cocotier est l’espèce principale et l’arbre forestier a une fonction d’accompagnement à vocation culturale.

Les cocoteraies sont situées sur le cordon littoral. Elles sont soumises à l’action des vents dominants venant du large et chargés d’embruns. Les sols sont à texture sableuse, ils sont pauvres en matière organique.

La conjonction des vents constants, d’un fort coefficient d’albédo et de sols percolants, caractérise un milieu physiologiquement sec malgré des précipitations notables. Les sols sont peu protégés de l’action des agents météoriques (pluie, vent) car il n’existe pas de strate basse sous le couvert des cocotiers. De fait, ils sont soumis à l’action érosive du vent et des pluies insuffisamment interceptées avant leur arrivée au sol.

Entre 1 m et 2 m de profondeur, il existe une nappe phréatique permanente.

Le rôle de l’Acacia mangium est multiple. Il a une fonction antérosive et de régénération des sols. La fonction production ligneuse doit compenser le surcoût que ce type d’association engendre.

Un brise-vent de cocotier est conservé en bordure de plage. Derrière ce brise-vent est installé un brise-vent de Filao (3 lignes à 2 x 3 m en quinconce). Lors de la plantation de la cocoteraie, une ligne sur trois de cocotier est remplacée par deux lignes d’Acacia mangium planté à 2 x 3 m. L’axe de plantation est perpendiculaire au littoral (cf. plan ci-dessous).

L’expérience montre que le principal gradient écologique est la distance à la mer.

![Diagramme de vents dominants maritimes](image)

Dispositif de méthode de régénération des cocoteraies littorales.

![Graphique d’évolution de la hauteur totale et du rapport h/ht en fonction de la distance à la mer](image)

Evolution de la hauteur totale et du rapport h/ht en fonction de la distance à la mer.

![Graphique de croissance de l’Acacia mangium en fonction de la distance à la mer](image)

Croissance de l’Acacia mangium en fonction de la distance à la mer.
Les embruns provoquent des brûlures de l'appareil foliaire des jeunes plants. A 2 ans environ, 30 % des plants ont des brûlures entraînant la destruction de l'axe principal. A 3 ans, la période critique est terminée puisque moins de 10 % des plants présentent des traces de brûlures.

L'arbre réagit en émettant plusieurs axes secondaires. A terme, les plants fortement exposés adoptent un port en drapeau. L'expérience montre que l'effet des embruns s'atténue très nettement une centaine de mètres derrière le brise-vent de cocotiers. Les premières années, les jeunes plants sont protégés avec des manchons de végétaux pressés ou des brise-vent tressés. Pour quantifier l'impact des embruns sur la forme de l'arbre, le rapport diamètre du houppier/hauteur totale est utilisé. Des valeurs élevées de ce rapport correspondent à un port buissonnant.

Le brise-vent de cocotier assure une protection sur une profondeur d'environ dix fois sa hauteur totale. Au-delà de cette distance, son efficacité diminue, ce qui se traduit par une diminution de croissance des acacias et une légère reprise des brûlures foliaires.

Les deux premières années sont une période cruciale pour l'installation du peuplement d'Acacia mangium. Il est nécessaire d'assurer une protection des plants contre les embruns pour leur permettre de s'implanter correctement. Passé ce délai, les arbres dont la croissance initiale était faible retrouvent un accroissement soutenu : l'installation définitive du peuplement est acquise.

Tableau VII

| Paramètres dendrométriques en fonction de la distance à la mer |
|-----------------|---|---|---|---|---|---|---|
| Distance/mé | 70 | 82 | 95 | 107 | 119 | 131 | 143 |
| à 2 ans |
| H_T (m) | 1,5 | 1,5 | 2,1 | 2,4 | 3,5 | 2,5 | 1,0 |
| Ø houppier/H_T | 0,87 | 0,60 | 0,82 | 0,75 | 0,66 | 0,72 | 0,80 |
| à 3 ans |
H_T (m)	3,3	3,7	4,6	4,7	5,9	5,0	4,5
C 1,30 m (cm)	11,3	14,1	15,5	17,9	23,0	19,1	16,0
Ø houppier/H_T	0,57	0,59	0,54	0,49	0,39	0,46	0,48

CONCLUSIONS

L'Acacia mangium est une espèce à promouvoir en reboisement notamment en zone périurbaine pour la récupération des jachères agricoles.

C'est une espèce peu exigeante qui peut s'accommoder de sols dégradés ou exceptionnellement pauvres. Même dans des conditions défavorables, elle conserve une croissance suffisante pour s'affranchir rapidement du recrutement de l'Eupatorium.

Les premiers essais de plantation en association avec le maïs se sont révélés concluants. En deuxième année, une association avec l'igname est envisageable.
Associé au cocotier sur cordon littoral, l’*Acacia mangium* conserve une croissance intéressante moyennant une protection contre les embruns pendant 2 ans. Au-delà de cette période, il forme un peuplement continu dont l’avenir est assuré. Il produit une litière abondante et son port bas-branchu, suite aux brûlures par les embruns, lui permet de ne pas concurrencer les cocotiers jusqu’à 3 ans. Cette espèce rejetée de souche sous réserve que le recépage soit réalisé en fin de saison sèche. En dépit d’attaques de cérambicids provoquant des gommoses importantes vers l’âge de 3 ans, elle réagit vigoureusement sans mortalité notable.

L’étude de productivité révèle que le matériau végétal disponible actuellement en Côte-d’Ivoire est parmi le plus performant. L’influence de la station sur la croissance est notable. Pour cette espèce réservée en priorité à ces sols pauvres dégradés, il devrait être possible d’obtenir une productivité moyenne d’environ 20-25 m³/ha/an à l’âge de 7 à 8 ans. En plantations expérimentales, l’accroissement moyen en volume peut dépasser 30 m³/ha/an.

RÉFÉRENCES BIBLIOGRAPHIQUES

Mesure de production de litière.

Bois d’Acacia mangium (4 ans) enstêtres.