Amélioration du cocotier
Méthode et suggestions pour une coopération internationale (1)

J. P. GASCON (2) et M. de NUCÉ de LAMOTHE (3)

Résumé. — Les caractères biologiques du cocotier ont conduit à lui adapter un schéma d’amélioration inspiré de la Sélection Récurrente Réciproque. Les objectifs de cette amélioration sont précisés : augmentation de la production de coprah à l’héctare, amélioration de la résistance aux maladies, amélioration de la qualité, en particulier de la teneur protéique de l’albumen, adaptation aux conditions locales. Mais l’accès est principalement mis sur des opérations indispensables à cette amélioration, pour lesquelles le concours d’organismes internationaux comme la F. A. O. peut être précieux : prospection, collections, échanges de matériel ; création de champs de comportement ; vulgarisation de techniques éprouvées.

Mots clés : Cocotier, Sélection, Coopération internationale.

Les cocotiers couvrent d’importantes surfaces dans divers pays tropicaux (2 000 000 ha aux Philippines, 1 600 000 en Indonésie) mais ont généralement des productions faibles. Pour ces pays l’augmentation des rendements est une nécessité économique, pour d’autres, l’extension de leur cocotier constitue une possibilité de diversifier leurs ressources agricoles. Dans les deux cas, un problème agroécologique complexe est posé, à la solution duquel participe l’amélioration du matériel végétal. Il lui revient en effet de créer des cocotiers hauts producteurs, résistants aux maladies, adaptés aux conditions locales et fournissant un coprah de qualité.

Un bref rappel de la méthode d’amélioration précisée par l’I. R. H. O. paraît utile avant de préciser les objectifs et d’aborder les moyens et les techniques souhaités pour réunir le plus de chances de succès.

I. — RAPPEL DE LA MÉTHODE D’AMÉLiorATION

Un résumé des caractéristiques propres à la biologie du cocotier facilitera la compréhension du schéma de sélection choisi.

Le cocotier généralement alligator par propreté présente également des variétés autogames (nains) et des souches intermédiaires ; il y a, par suite, de nettes différences suivant les populations.

La disposition de ses fleurs femelles et de ses fleurs mâles sur une même inflorescence rend possible l’ablation des secondes et ainsi l’obtention de semences par l’apport de pollen (pollinisation assistée et fécondation artificielle).

La pérennité du cocotier est à la fois un atout, on peut l’observer et en obtenir des graines durant plusieurs dizaines d’années, et un handicap, la phase improductive dure de 3 à 7 ans, les caractères les plus contraignants pour son amélioration sont toutefois l’impossibilité d’augmenter la teneur protéique. Ce dernier facteur peut être étudié et l’exploitation des aptitudes spécifiques à la combinaison et à la mise au point de techniques particulières pour la production de semences.

La méthode de sélection tient compte de ces caractères biologiques ; elle combine les choix phénotypiques pour les caractères héréditaires avec la recherche et l’exploitation des bonnes aptitudes générales à la combinaison d’abord entre souches puis entre individus ; elle se schématisé de la façon suivante :

1. — Prospection.

Etu de populations et choix phénotypiques suivant l’hérédité des caractères.

2. — Étude des aptitudes générales à la combinaison entre souches et variétés.

Des hybrides entre souches et variétés sont étudiés dans des essais comparatifs ; ils sont de préférence réalisés entre des souches et des variétés qui diffèrent phénotypiquement et génétiquement.

3. — Étude des aptitudes générales à la combinaison entre individus (Fig. 1).

L’amélioration des meilleurs hybrides des essais précédents constitue l’étape suivante, qui peut succinctement se décrire ainsi, étant donné 2 souches A et B se combinant bien :

— des arbres de la souche A sont croisés avec un échantillon d’arbres de la souche B et des arbres de la souche A avec un échantillon d’arbres de la souche A. Les hybrides obtenus sont plantés dans des essais comparatifs. A noter que les arbres croisés ont été choisis en fonction de l’hérédité des caractères,

— ces arbres des souches A et B sont des que possible autofécondés et les plants obtenus mis en place.

Lorsque les résultats des essais comparatifs sont connus, on peut utiliser les autofécondations d’une part des meilleurs arbres de A, d’autre part des meilleurs arbres de B pour établir des champs semenciers, qui seront fécondés avec des pollens des meilleurs arbres de B ou de A. On peut également entreprendre un second cycle d’amélioration de l’hybride, si la variabilité au sein des souches parentales est suffisante.

L’étude porte sur un seul des parents de l’hybride A × B, lorsque l’autre parent est une variété autogame (nain) et d’autres schémas d’amélioration sont évidemment nécessaires pour augmenter la variabilité, corriger un défaut, introduire une résistance, etc.

(2) Département Sélection de l’I. R. H. O., Paris (France).
(3) Département Sélection-Cocotier I. R. H. O., Port-Bonet (Côte-d’Ivoire).
II. — OBJECTIFS

L'augmentation du rendement à l'hectare est naturellement l'objectif final, mais son approche ne peut se concevoir sans une réponse aux problèmes qui se posent :

— augmentation de la production de coprah à l'ha,
— amélioration de la résistance aux maladies,
— amélioration de la qualité, en particulier de la composition protéique de l’albumen,
— adaptation aux conditions locales.

Pour la solution de chacun d'eux, il faut dès le départ tenir compte d'éléments connus ; nous en échelonneraions-trois:

a) Augmentation de la production de coprah/ha.

La forte production de l'hybride Nain Jaune × Grand Ouest Africain s'explique probablement par la combinaison d'une bonne balance interne avec une bonne balance interparentale (additivité et hétéroïsism) ; ceci est corroboré par l'effet dépressif constaté dans les autofécondations de Grand Ouest Africain et par l'observation dans certains pays d'hybrides inférieurs à l'un des parents.

Bien que ces données soient encore réduites, il parait souhaitable d'une façon générale de combiner des souches génétiquement différentes et d'éviter la consanguinité. Le premier point invite à une bonne connaissance des souches existantes et à la possibilité pour les diverses stations de recherches de se les procurer. Le second point attire l'attention sur les dangers d'un programme limité à quelques souches provenant d'une même aire géographique. Ainsi, si le nain était, comme le suppose W. P. Handover, « un sport » et « mutant » probablement à Java, il faudrait tenir compte de sa parenté avec les grands de cette région.

b) Amélioration de la résistance aux maladies.

Des maladies graves affectent le cocotier tant dans le Pacifique qu'en Afrique et en Amérique ; les facteurs de résistance absents dans une souche peuvent se trouver dans les souches d'autres pays ou apparaître dans certaines combinaisons.

L'introduction de souches phénotypiquement et génétiquement différentes est la encore conseillée ; elle peut être facilitée lorsque certaines caractéristiques de la plante constituent une indication. Récemment, par exemple, une double assise scléritée a été mise en évidence au niveau de l'hydropéde des racines du Grand local, qui résiste à la maladie du dépérissement des Nouvelles-Hébrides ; cette assise fait défaut dans les souches sensibles.

c) Amélioration de la qualité du coprah.

Une meilleure connaissance de la composition des huiles et de la teneur protéique est importante pour orienter l'amélioration du cocotier selon les besoins alimentaires et industriels.

L'effort semble devoir principalement porter sur la constitution protéique car la composition de l'huile parait satisfaire les utilisateurs.

d) Adaptation aux conditions locales.

Un hybride a, d'une façon générale, un potentiel d'adaptation plus vaste que celui de ses parents ; néanmoins, il ne faut pas négliger les conditions particulières qui peuvent modifier l'environnement ; la nature du sol (corail), les ouragans, les insectes, les maladies, etc., sont autant de facteurs qui justifient la mise en place d'essais de comportement.

III. — MOYENS ET TECHNIQUES

Le choix d'une méthode et la définition des objectifs ne suffisent pas pour assurer le succès d'un programme d'amélioration. Il faut des moyens et des techniques valables.

Moyens.

La variabilité génétique est sans aucun doute l'élément le plus indispensable au départ pour atteindre les objectifs fixés, mais le plus délicat à maîtriser. Il faut en effet être en mesure :

1) de réaliser de vraies prospections, c'est-à-dire caractériser les populations par des observations précises puis choisir éventuellement des individus,

2) d'échanger le pollen et les graines sans entraves.

si ce n'est celles dues aux contrôles phytophagiques qui mériteraient d'ailleurs d'être mieux adaptés à la plante.
Les hybrides obtenus, les champs de comportement sont utiles d’une façon générale mais deviennent indispensables dès que l’environnement présente des particularités. Il paraît souhaitable d’en concevoir un réseau bien situé, bien conduit et comportant des hybrides en nombre suffisant et différencier les uns des autres.

En dehors de cela, une place doit être faite aux orientations nouvelles, dont certaines peuvent être à l’origine de progrès rapides. Les cultures de tissus doivent aboutir à la multiplexation végétative du cocotier, celles d’antheres à l’obtention de lignées pures et celles moins spectaculaires d’embryons à des échanges faciles de matériaux. L’électrophorèse peut d’autre part apporter un précieux concours pour l’exploitation des prospections ou pour la conduite des programmes d’amélioration.

Techniques.

La réalisation des programmes d’amélioration et de production de semences demande des techniques bien au point et appliquées scrupuleusement. On a généralement tendance à ne pas attacher une importance suffisante aux contrôles à tous les stades de l’exécution. L’obtention de semences légitimes par fécondation artificielle et par pollinisation assistée ne s’improvise pas. Évidemment, la présence de Nains dans des plantations d’hybrides Nain × Grand sanctionnera la qualité du travail de la même façon que celle de dura dans les plantations dura × pisifera de palmiers à huile.

CONCLUSION

Les caractères biologiques du cocotier ont conduit à lui adapter un schéma d’amélioration inspiré de la Sélection Récurrente Réciproque.

A côté de l’objectif traditionnel de cette amélioration que constitue l’augmentation de la production à l’hectare, une place a été faite à la résistance aux maladies, à la valorisation protéique du coprah et à l’étude des interactions hybride-environnement.

Notre propos principal était cependant d’attirer l’attention sur l’utilité, pour l’amélioration du cocotier :

1) d’une meilleure exploitation de la variabilité génétique des peuplements et des collections,
2) de la création d’un réseau de champs de comportement,
3) de la bonne application de techniques éprouvées.

La F. A. O. et les organismes internationaux ont un rôle à jouer en favorisant les prospections, l’établissement des collections, les échanges de matériel et la vulgarisation des techniques.

SUMMARY

Coconut improvement, Method and Suggestions for International Co-operation.

J. P. GASCON and M. de NUCÉ de LAMOTHE, Oléagineux, 1976, 31, n° 11, p. 479-482.

The biological characters of the coconut have led to an improvement plan inspired by Recurrent Reciprocal Selection being adapted to it. This improvement has precise aims: an increase in copra production per hectare; improved disease resistance; better quality, in particular as regards the protein content of the almonds; adaptation to local conditions. But the emphasis is placed mainly on those operations indispensable to this improvement for which the help of international bodies like the F. A. O. would be precious: prospecting, collections, exchanges of planting material; creation of performance trials; extension of proved techniques.

RESUMEN

Mejora del cocotero — Método y sugerencia por una cooperación internacional.

J. P. GASCON y M. de NUCÉ de LAMOTHE, Oléagineux, 1976, 31, n° 11, p. 479-482.

Considerando los caracteres biológicos del cocotero se le adaptó un esquema de mejora inspirado en la Selección Recurrente Reciproca. Se especifican los objetivos de tal mejora: aumento de la producción de copra por hectárea, mejora de la resistencia a las enfermedades, mejora de la calidad, especialmente del contenido de proteínas del albu- men, adaptación a las condiciones locales. Pero se hace hincapié esencialmente en operaciones indispensables en aquella mejora, que pueden recibir una valiosa colaboración de organismo internacionales como la F. A. O.: reconocimientos, colecciones, intercambios de material; creación de campos de comportamiento; divulgación de técnicas ya experimentadas.

Coconut groves cover very large areas in various tropical countries (2 000 000 ha in the Philippines, 1 600 000 ha in Indonesia), but their yields are usually small. For some of these countries increased production is an economic necessity, for others the extension of their coconut groves offers a possibility of diversifying their agricultural resources. In both cases there is a complex socio-agricultural problem, and the improvement of planting material provides part of the solution. In effect, it is for plant improvement to create high-yielding coconuts, disease-resistant, adapted to local conditions and producing good quality copra.

It appears appropriate to give a brief reminder of the method of improvement recommended by the I. P. H. O. before going on to define the objectives and speak of the methods and techniques desirable to give the best chance of success.

1) Communication presented at the Experts consultation on Palm tree Breeding, P. A. O., Rome (Italy), September 1975.
2) Plant Breeding Department, I. P. H. O., Paris (France).
3) I. P. H. O. Coconut Breeding Department, Port-Bouet (Ivory Coast).

Coconut improvement. Method & Suggestions for international Co-operation (1)

J. P. GASCON (2) and M. de NUCÉ de LAMOTHE (3)

1. — A REMINDER OF THE METHOD OF IMPROVEMENT

A summary of the characteristics proper to coconut biology will make it easier to understand the selection plan chosen.

The coconut is usually alogeous because protandrous, but there are also autogamous varieties (Dwarfs) and interme- diary ones; consequently, there are marked differences be- tween populations.

The fact that its female and male flowers are borne on the same inflorescence makes it possible to expose the latter and obtain seeds by pollen application (assisted pollination or artificial pollination).

The perenniality of the coconut is both a trampy card — it can be observed and will produce seed for several decades — and a handicap — the non-productive phase lasts 3-7 years. However, the characters which limit its improvement the most are the impossibility of multiplying it vegetatively and its small reproductive power (100 seeds per individual/year against 4-7 000 for the oil palm), which is even more reduced when the tree is artificially pollinated. This makes it difficult