II. — MÉTHODES ADOPTÉES POUR L’ÉTUDE DES PÂTURAGES

De très nombreuses méthodes d’étude des pâturages sont utilisées dans le monde et il a fallu entre toutes choisir, voire adapter, celles qui correspondaient le mieux aux conditions de travail local. Après étude et dépouillement d’une documentation abondante on a pu préciser les principes de travail à adopter et les méthodes à suivre.

La base de l’expérimentation est constituée par l’enclos ou paddock sur lequel sont effectués les divers essais envisagés.

(1) La première partie de cet article a été publiée dans le n° 97 (septembre-octobre), p. 3.

Revue Bois et Forêts des Tropiques, n° 98, Novembre-Décembre 1984
Il a été prévu 4 séries de paddocks :
- 17 paddocks sur sols granitiques,
- 17 paddocks sur sols basaltiques rouges,
- 8 paddocks sur sols basaltiques foncés,
- 11 paddocks sur sols hydromorphes.

Le tableau ci-contre donne à titre d'exemple le schéma de principe des expérimentations à entreprendre sur une série de 17 paddocks — 9 en pâturage continu et 8 en pâturage différé.

Les divers essais auront pour but de préciser :
- le rôle des feux,
- l'influence de la charge,
- l'influence du pâturage différé,
- le rôle du défrichement,
- l'influence de la rotation.

Les traits relient entre eux les divers enclos utilisés pour un essai déterminé. Pour des séries de 8 et 11 paddocks, le schéma serait évidemment plus simple.

Comme on le voit, la base de travail est l'enclos. La surface de ceux qui ont été réalisés varie de 2,5 ha à 15 ha (moyenne 6 ha). Chaque fois que cela a été possible les parcs se sont appuyés sur les cours d'eau et leurs galeries. En particulier, tous les parcs granitiques ont au moins un ruisseau en limite utilisé également comme abreuvoir naturel. Ailleurs des abreuvoirs ont été construits, des bosquets d'ombrage créés, des haies vives expérimentées.

Ces parcs sont pâturés dès le début de la saison des pluies par des troupeaux dont l'importance varie suivant le but recherché. Pour certains parcs, on recherche précisément le poids optimum en bétail (charge correcte), compatible avec une croissance normale des animaux et la pérennité, voire l'amélioration, du pâturage.

Cette notion de charge correcte mérite quelques précisions car elle est essentielle.

Que la surcharge doive être évitée n'étonne pas car le parcours devient alors une source de dégradation du sol pouvant aller jusqu'à la dénuétion. Elle se traduit aussi tel par un enravissement de Sporobolus pyramidalis, graminée pauvre très mal adaptée caractérisant surtout un passage trop fréquent du bétail.

Mais la charge insuffisante doit aussi être évitée à tout prix. En effet si aucun inconvénient n'appa-
rait à la repousse de l’herbe, en début de saison des pluies, très vite des quantités considérables de refus s’installent sous forme de touffes sclérifiées et siliciées, en tout cas inconsummables ou de valeur alimentaire à peu près nulle. Le résultat est qu’un pâturage surchargé. En outre, la fin de la saison des pluies y est pour le bétail une période de crise très sérieuse. Il vaut mieux, et de très loin, ne pas charger du tout que de sous-charger ; dans le premier cas les plantes fourragères constituent des réserves, dans le second, les bonnes s’épuisent au profit des plus mauvaises.

Signalons que dans l’Adamaoua le défaut de charge se reconnaît et se juge assez bien à l’abondance de *Pandemia phragmitoides* remarquable au moment de la floraison (septembre).

Une rotation bien conduite doit permettre d’aborder la saison sèche avec une herbe rase d’où naîtra un regain important qui sous forme de fourrage sur pied sera essentiel pour la saison sèche. Toutefois il est possible de corriger les fautes de charge en coupant les refus (charge insuffisante) ou en déplaçant les troupeaux sur des zones fauchées suffisamment à l’avance. Ces opérations s’imposent déjà avant la fin de la saison des pluies, le dernier mois étant parfois dur à passer pour le bétail qui ne dispose pas encore des regains après-feu ni des pâturages de sois inondés.

Les essais, et en particulier la détermination de la charge corrective doivent s’appuyer sur un certain nombre de méthodes d’observation.

Les méthodes sont les suivantes :

1er ANALYSE FLORISTIQUE

Plantes fourragères :

Parmi les nombreuses méthodes connues, on a choisi une méthode d’analyse utilisant la surface de base des plantes et après un essai de la mesure de la surface de base en quadrats, c’est le méthode de la ligne d’interception qui fut finalement adoptée. Elle repose sur le principe suivant : On mesure sur un segment de droite placé au hasard au sol, la largeur des souches interceptées. On obtient après répétition de l’opération un certain nombre de fois une longueur pour chaque espèce qui, rapportée à la longueur totale analysée, donne une surface de base en % de la surface totale.

(La logique mathématique voudrait que ces chiffres fussent élevés au carré puisque notre opération a un caractère linéaire. Pour nos inventaires en fait cela importe peu.)

Dans la pratique cette droite est matérialisée par un câble de 1,5 mm de diamètre tendu entre 2 piquets métalliques, la longueur du segment de droite (ligne unitaire) a été fixée à 5 m et on a décidé d’analyser par parc 40 lignes soit une longueur de 200 m.

Les 40 lignes sont placées rigoureusement au hasard, pour cela,

Tourniquet servant à déterminer la direction des lignes d’interception (Analyse floristique).

on place au centre approximatif du paddock, un tourniquet composé d’un piquet supportant un axe et une flèche de métal tournant librement autour de cet axe.

Le tourniquet actionné vigoureusement donne une direction au hasard et dans cette direction on place un jalons à un certain nombre de pas tirés au sort. A partir de ce jalons on pose le câble matérialisant la ligne dans une direction déterminée également par l’utilisation du tourniquet.

Les longueurs des tiges ou des touffes interceptées sont mesurées à 0,5 mm près et rapportées à certaines espèces dites « espèces clés » pour les plus abondantes ; le reste étant classé en graminées, légumineuses et plantes diverses.
2° PRODUCTIVITÉ

Comme on a choisi, comme méthode d’analyse botanique, une méthode tendant à déterminer la surface basale, c’est à partir de ce critère que sera mesurée la productivité.

On calcule le poids sec à l’air produit par unité de surface de base pour chaque des principales espèces et le résultat est exprimé en unités alimentaires après analyse du fourrage.

On estime la productivité d’un paddock en multipliant la surface de base de chaque espèce par le nombre d’unités alimentaires correspondant et en additionnant les résultats obtenus.

En outre, des placeaux d’essai de 10 m² fauchés 2, 4 ou 5 fois par saison des pluies, avec rotation des traitements doivent apporter un complément d’information à la méthode précédente et permettre le calcul d’un coefficient de correction.

On doit rechercher en outre à établir une relation entre la hauteur moyenne à maturité et la productivité ainsi qu’entre la pluviométrie annuelle et la productivité. Enfin par analyse chimique de fourrage (de première repousse, deuxième repousse, etc... et maturité), la productivité pourra être exprimée en unités alimentaires.

3° CAPACITÉ DE CHARGE

C’est l’élément pratique le plus intéressant. Il est à déterminer pour la saison sèche et la saison des pluies en fonction essentiellement des terrains et des races. Cette capacité de charge sera basée sur l’évaluation du gain de poids des animaux en faisant intervenir éventuellement un coefficient de récupération pour les animaux ayant malgré en saison sèche.

Entre la production estimée et la capacité de charge mesurée il doit y avoir un rapport permettant le contrôle. Compte tenu de la ration d’entretien, de l’énergie perdue en déplacement et des besoins de la production (lait et viande, gestation) on estime que la capacité de charge devrait représenter les 7 ou 8 dixièmes de la productivité.

4° CONTRÔLE DE L’UTILISATION

Il consiste à s’assurer en général qu’une proportion convenable de la production annuelle des plantes est consommée et qu’il reste des réserves propres à favoriser un redémarrage vigoureux.

Pour cela il faut définir le taux correct d’utilisation.

Le taux d’utilisation tout court est estimé par mesure des touffes non broutées, répartition en classes de hauteur et poids exprimé en poids secs.

Le taux correct sera, lui, déterminé sur des placeaux traités d’une façon simulant le broutage. À maturité les placeaux seront fauchés à une hauteur déterminée représentant un pourcentage d’utilisation de 50 % à 90 %. Les mêmes traitements répétés chaque année permettront de préciser quel est le meilleur pour la pérennité des plantes.

IV. — PREMIERS RÉSULTATS OBTENUS

Sur les bases extrêmement rigoureuses dont nous avons parlé on avait estimé qu’une quinzaine d’années seraient nécessaires pour que les expériences deviennent significatives. La Station n’a que six années d’expérimentation derrière elle, et l’on comprendra pourquoi des résultats complets ne peuvent être exposés.

Il est cependant possible de tirer de ces premiers essais quelques conclusions en particulier en ce qui concerne le rôle et l’action des feux sur les pâturages et le problème de l’implantation des haies vives.

A. — RÔLE ET ACTION DES FEUX

Il était nécessaire pour essayer de préciser le rôle et l’action des feux de pouvoir répondre en particulier aux questions suivantes :

1° Quelle est la meilleure période de mise en feux ?
 — Pour assurer la pérennité des meilleures espèces fourragères.
 — Pour la lutte contre les parasites.
 — Pour la production de regain et son exploitation.
 — Pour la lutte contre la végétation arborée.

2° Quels sont les effets de la protection contre les feux et peut-on les remplacer par quelque chose

Pour répondre à ces différentes questions, la
station fourragère de Wakwa a disposé dès 1957 de 33 paddocks de 6 hectares en moyenne. Les expériences avec les animaux ont commencé cette année-là, mais la méthode d'analyse botanique convenable (ligne d'interception) ne fut utilisée qu'en 1958. Bien que la gestion de la station ait subi quelques aléas, que la série complète des paddocks n’ait pu être réalisée et que le programme prévu qu’il faudra 15 à 20 ans pour obtenir des résultats sérieux, un premier dépouillement peut-être valablement tenté. En particulier, 16 paddocks ont été défrichés et l’inventaire complet de la végétation ligneuse des 17 autres a été effectué en 1957/1958. Une méthode statistique d’analyse avait été prévue, mais l’échantillonnage était mauvais, étant donné la surface relativement restreinte des parcelles. La multiplication du nombre des bandes s’imposait et compte tenu du temps passé à leur tirage au sort et leur implantation, il était plus efficace d’effectuer un comptage complet. En 1962/63 donc 5 ans plus tard, un comptage identique a été effectué et les comparaisons sont faciles. Les comptages ont été faits en distinguant les rejets (0 à 1,5 m) des arbustes (1,5 m-3 m) et des arbres (au-delà).

Les paddocks sont implantés sur 3 types de sols :

- sols granitiques G
- sols basaltiques foncés F
- sols rouges R

Ils sont soumis à des feux précoces (dès que le seuil de combustibilité est atteint), à des feux de pleine saison sèche on à des feux de début de saison des pluies. Deux paddocks sont intégralement protégés des feux, un sur granit et un sur basaltes.

Enfin, il est à préciser que certains paddocks ne sont pâturés que 2 ans sur 3 ce qui permet un feu important tous les 3 ans. On les désignera, nous l’avons vu sous le terme de « paddocks différés ».

Les moyens matériels n’ont malheureusement pas permis de réaliser les paddocks non dessouchés, différés à feux de pleines saisons sèches, qui cussent montré dans quelle mesure un seul feu violent tous les 3 ans pouvait agir sur la végétation ligneuse.

Les résultats qui ont pu être dégagés sont les suivants:
a) **Action sur les graminées.**

C’est vraiment dans ce domaine que 15-20 années de recherches suivies seront nécessaires. Dans l’état actuel des choses, trop de facteurs aberrants interviennent encore qui rendent délicate l’exploitation des analyses botaniques et des fiches de charge des paddocks. Le dépouillement partiel sera cependant effectué en 1964.

b) **Action sur les tiques.**

Cette étude fut menée en 1957 et 1958 sur des animaux détiqés avant leur entrée et à leur sortie des paddocks au bout d’un nombre déterminé de jours. Le rapport 1958 précise :

« Poursuite pendant toute l’année, l’étude sur les tiques a permis de constater leur disparition presque complète en septembre. Pas de différence apprante suivant les systèmes des feux ou même l’absence de feux. »

Cette conclusion est importante en ce qu’elle contredit un argument couramment avancé pour la défense des feux de brousse.

c) **Action sur la production de regain et son exploitation.**

En Adamanna, 2 mois 1/2 après les dernières pluies, le passage du feu est suivi d’une repousse importante d’herbe. Si donc on exclut les feux de début de saison des pluies, sans intérêt quant aux repousses, nous aurons à choisir entre feux précoce, feux de pleine saison sèche et absence complète de feux.

Entre l’absence complète de feux et les feux précoce, des expériences de charge en saison sèche 1958-1959 ont permis de tirer les conclusions suivantes :

— Une repousse de saison sèche existe même en l’absence de feux, qui s’ajoute au fourrage sur pied existant.

— Sur sols basaltiques du 16 janvier au 21 avril on a pu tenir en moyenne une bête de 250 kg pour 7 hectares non brûlés ou pour 5,7 ha soumis aux feux précoce.

— Les animaux dans ces conditions ont continué à prendre du poids à raison de 360 g par animal et par jour dans le premier cas et 340 g dans le second.

— La consommation a été dans les paddocks non brûlés, inférieure de 30 % à celle des paddocks trafités en feux précoce.

Entre feux précoce et feux de pleine saison sèche, il ne peut être question de présenter des chiffres comme précédemment et il faudrait pouvoir mesurer la productivité de l’herbe. Toutefois les remarques suivantes sont à faire :

1o Les feux très précoce entraînaient la combustion du fourrage de feuilles sèches et laissent subsister les grandes pailles. Le regain est abondant et accessible au bétail qui en outre arrive à utiliser une partie des éléments secs qui ont été épargnés par le feu.

2o Les feux de pleine saison sèche 2-3 mois après les pluies entraînent encore la formation d’un regain intéressant, utilisable par le bétail qui aura au préalable profité de tout le foin sur pied et également des repousses en l’absence de feux, qui ont été signalés plus haut.

3o Les feux pas assez précoce ou trop peu tardifs qui laissent les grandes pailles incomplètement brûlées sont à proscrire. En effet, si le regain est abondant il est à peu près inaccessible au bétail qui vient se piquer le museau à 15 ou 20 cm du sol sur les chausines non calcinées. C’est ainsi que pendant cette saison sèche, des parcelles d’aspect très vert ont dû être abandonnées par le bétail qui n’y trouvait plus rien de disponible.

En ce qui concerne donc les regains, 2 périodes de mises à feu sont à envisager. Une première portant sur environ le tiers ou le quart des surfaces à pâturer lorsque le seuil de combustibilité est atteint. Ce seuil très variable avec le relief et la nature des graminées ne permet pas le développement de feux de grande envergure et oblige à repandre les mêmes parcelles plusieurs fois à quelques jours d'intervalle ce qui est normal.

La deuxième mise à feu se fera sur le reste des pâturages qui aura été parcouru en même temps que la première partie et qui fournira le regain pour les 2 mois restant de saison sèche.

Il y a lieu de faire une réserve importante en ce qui concerne les sols...
Une parcelle d'essai de plantes fourragères.

granitiques car à peu près tous (sauf les arènes granitiques, de bas-fonds) ont un très faible pouvoir de rétention pour l'eau et les regains après feux tardifs sont très peu abondants. Il est préférable dans ces cas d'envisager la mise à feux précoce dans la totalité des pâturages.

d) Action sur la végétation arborée.

L'étude de cette action repose sur les analyses détaillées dont il a été question précédemment : les résultats devront être vérifiés dans 4 ou 5 ans par un nouveau comptage qui éliminera en grande partie l'influence du passé des parcelles qui furent ou cultivées ou exploitées pour le bois, ou même habitées. La station fourragère est installée sur une savane arbusive dominée essentiellement par *Daniellia oliveri*. Les espèces les plus fréquentes sont par ordre décroissant :

TERRAINS GRANITIQUES

- *Terminalia macropera*
- *Daniellia oliveri*
- *Protea eliottii*
- *Hymenocardia acida*
- *Annona arenaria*
- *Pilostigma thonningii*
- *Lophira lanceolata*
- *Psorospermum globerrimum*
- *Lannea kerstingii*
- *Butyrospermum parkii*
- *Harungana madagascariensis*
- *Naucea latifolia*
- *Majhenus senegalensis*

Plus une cinquantaine d'espèces.

TERRAINS BASALTIQUES

- *Annona arenaria*
- *Pilostigma thonningii*
- *Hymenocardia acida*
- *Psorospermum globerrimum*
- *Syzigium macrocarpum*
- *Psorospermum febrifugum*
- *Stereospermum kuilclamum*
- *Entada abyssinica*
- *Brassia ferruginea*
- *Gardinia armella*
- *Trichilia emelicea*
- *Vitis cineata*

Plus une cinquantaine d'espèces.

Le tableau ci-après permet de constater que le nombre des individus des différentes espèces a considérablement augmenté en 5 ans. A parti le paddock R9 virement aberrant, les diminutions ou faibles augmentations observées sur basaltes ne s'expliquent qu'en partie par des exploitations délictueuses. Pour les paddocks granitiques l'accroissement est parfois considérable et pour pouvoir chiffrer la production un échantillon a été exploité, cubé et pesé.

En l'état actuel des choses, l'étude du tableau amène les remarques suivantes :

1° La surcharge des paddocks F9 et R9 associée aux feux de pleine saison sèche a entraîné une diminution du nombre des jeunes pousses.

2° Les paddocks R2 et R4, en feux de pleine
<table>
<thead>
<tr>
<th>No</th>
<th>Traitement</th>
<th>Surface</th>
<th>À l'has après 5 ans - début</th>
<th>Accroissement %</th>
<th>À l'has après 5 ans - début</th>
<th>ARBUSTES à l'has après 5 ans - début</th>
<th>ARBRES à l'has après 5 ans - début</th>
<th>Total arbres arbustes rejets à l'has après 5 ans - début</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Feux précoce, charge légère</td>
<td>3,12</td>
<td>1,845</td>
<td>+ 32,8 %</td>
<td>950</td>
<td>56</td>
<td>8,390</td>
<td>4,776</td>
</tr>
<tr>
<td>G2</td>
<td>Feux pleine saison sèche, charge légère</td>
<td>4,84</td>
<td>1,430</td>
<td>+ 21,2 %</td>
<td>550</td>
<td>70</td>
<td>9,988</td>
<td>6,058</td>
</tr>
<tr>
<td>G3</td>
<td>Feux précoce, charge correcte</td>
<td>3,76</td>
<td>1,090</td>
<td>0</td>
<td>780</td>
<td>48</td>
<td>7,053</td>
<td>4,711</td>
</tr>
<tr>
<td>G4</td>
<td>Feux pleine saison sèche, charge correcte</td>
<td>14,58</td>
<td>1,400</td>
<td>+ 88,5 %</td>
<td>650</td>
<td>70</td>
<td>30,787</td>
<td>11,950</td>
</tr>
<tr>
<td>G5</td>
<td>Pas de feux, charge correcte</td>
<td>10,48</td>
<td>2,270</td>
<td>+ 106 %</td>
<td>587</td>
<td>26,5</td>
<td>30,230</td>
<td>12,705</td>
</tr>
<tr>
<td>G6</td>
<td>Différés, feux précoce, charge correcte</td>
<td>15,15</td>
<td>1,680</td>
<td>+ 68,1 %</td>
<td>599</td>
<td>38</td>
<td>39,529</td>
<td>16,901</td>
</tr>
<tr>
<td>G9</td>
<td>Feux pleine saison sèche, surcharge</td>
<td>3,32</td>
<td>2,310</td>
<td>124 %</td>
<td>1,230</td>
<td>49</td>
<td>11,916</td>
<td>4,108</td>
</tr>
<tr>
<td>R1</td>
<td>Feux précoce, charge légère</td>
<td>6,93</td>
<td>482</td>
<td>- 44,5 %</td>
<td>375</td>
<td>30,6</td>
<td>6,197</td>
<td>4,692</td>
</tr>
<tr>
<td>R2</td>
<td>Feux pleine saison sèche, charge légère</td>
<td>8,16</td>
<td>450</td>
<td>- 21 %</td>
<td>78</td>
<td>13,25</td>
<td>4,436</td>
<td>4,837</td>
</tr>
<tr>
<td>R3</td>
<td>Feux précoce, charge correcte</td>
<td>8,08</td>
<td>197</td>
<td>- 70 %</td>
<td>170</td>
<td>14,6</td>
<td>3,081</td>
<td>3,384</td>
</tr>
<tr>
<td>R4</td>
<td>Feux pleine saison sèche, charge correcte</td>
<td>6,29</td>
<td>720</td>
<td>- 28 %</td>
<td>555</td>
<td>1,75</td>
<td>8,037</td>
<td>6,836</td>
</tr>
<tr>
<td>R5</td>
<td>Pas de feux, charge correcte</td>
<td>4,73</td>
<td>480</td>
<td>- 34,4 %</td>
<td>517</td>
<td>7</td>
<td>4,753</td>
<td>3,484</td>
</tr>
<tr>
<td>R6</td>
<td>Différés feux précoce, charge correcte</td>
<td>3,57</td>
<td>910</td>
<td>+ 6,3 %</td>
<td>477</td>
<td>9,25</td>
<td>4,970</td>
<td>3,304</td>
</tr>
<tr>
<td>R9</td>
<td>Feux pleine saison sèche, surcharge</td>
<td>5,38</td>
<td>255</td>
<td>- 78,3 %</td>
<td>376</td>
<td>20,8</td>
<td>2,963</td>
<td>2,668</td>
</tr>
<tr>
<td>F3</td>
<td>Feux précoce, charge correcte</td>
<td>2,82</td>
<td>205</td>
<td>- 74,3 %</td>
<td>148</td>
<td>7,8</td>
<td>1,099</td>
<td>3,218</td>
</tr>
<tr>
<td>F6</td>
<td>Différés, feux précoce, charge correcte</td>
<td>2,81</td>
<td>400</td>
<td>- 18,9 %</td>
<td>232</td>
<td>5,7</td>
<td>2,049</td>
<td>1,776</td>
</tr>
<tr>
<td>F9</td>
<td>Feux pleine saison sèche, surcharge</td>
<td>3,45</td>
<td>460</td>
<td>- 33 %</td>
<td>230</td>
<td>23,2</td>
<td>2,794</td>
<td>2,484</td>
</tr>
</tbody>
</table>

saison sèche également, mais avec des charges légères et correctes sont mieux engrobés au moment des feux qui y sont plus violents. Le nombre des jeunes pousses diminue là encore mais moins qu'en R9 et F3. Cela semblerait devoir montrer que les différences sont liées à l'importance des charges.

3° Le paddock R5 protégé des feux et avec une charge réputée normale ne présente pas une couverture arbustive globale supérieure à la moyenne.

4° Les paddocks F6 et R6 «différés» portant une charge normale et traités avec des feux précoce sont parmi les paddocks ayant eu la poussée de rejets la moins défavorisée, bien que les feux y soient plus violents (1fois tous les 3 ans) que dans leurs homologues non «différés» R3 et R5.

5° L'étude de la série granitique montre que l'ensemble des paddocks est relativement homogène. Pourtant l'importance des végétaux ligneux augmente avec la charge pour G3-G4 et G9. Bien que ces parcelles soient traitées en feux de saison sèche, ceux-ci n'ont qu'une violence limitée par suite de la faiblesse de la couverture herbacée qui subsiste.
aprè l’hivernage. Entre G3-G4 et G5, l’absence de feux favorise le développement des jeunes plants mais il semble prématûrée de chercher à en tirer dès à présent des conclusions trop précises.

Nos 2 séries basaltiques et granitiques se différencient quant à leur comportement en matière de végétation ligneuse. En fait, dans tous les cas, les paddocks granitiques supportent une charge en bétail inférieure de 10 à 20 % à celle de leurs homologues basaltiques. Dès lors, on doit constater que le facteur « charge » est plus important que le facteur époque et violence des feux. Une charge de 500 à 600 kg/ha semble capable de faire régresser les végétaux ligneux jeunes surtout, qui sont précisément ceux qui génèrent et encroûvent les pâturages. Ce résultat assez inattendu demandera confirmation mais, en fait, l’observation des terrains de parcours le montre, les secteurs non pâturés soumis à des feux violents sont malgré tout plus encroûvés de végétaux ligneux que d’autres intensément parcourus.

En tout état de cause il n’est pas souhaitable de rechercher une double production ligneuse et herbacée et dans un avenir de l’ordre de 25 ans les terrains de parcours auront été débarrassés de la végétation arbustive qui les encombre sur tous les terrains plats ou à faible pente. Les grands arbres pourront sans inconvénient apparent être conservés dans la limite de 20 à 30 à l’hectare.

En tout cas, en terrains granitiques il faut choisir ou de les faire pâturer et de fabriquer du bois (car l’action des feux est faible), ou de ne pas les faire parcourir pour avoir des feux assez violents capables de limiter le développement arboré et l’opération devient sans intérêts. En fait, la méthode du pâturage différé à une année sur trois avec feux de pleine saison sèche paraît être le meilleur mode d’exploitation, en terrains non dessouchés surtout. Le dépouillement des analyses de plantes fourragères nous permettra de préciser ultérieurement ce point particulier. Précisons qu’après dessouchage, 2 journées de travail les années de parcours et 1 seule journée les années différées, permettent d’élminer les rejets sur un hectare de pâturage. Sans doute le dessouchage représente-t-il un investissement de travail assez important, mais pas au-dessus des forces d’un berger qui avec une pioche et une hache a, mois après mois, année après année, d’énormes possibilités d’aménagement. Mais là encore il faut que la propriété du sol soit définie.

Signalons enfin que la Station Zootechnique de Wakwa est également un excellent terrain d’expé-
rience. Les parcs sont beaucoup plus vastes que les paddocks d’essais de la Station fourragère et composent des parties dessouchées plates ou à faible pente et des parties à relief accusé intactes. Les nécessités expérimentales de sélection imposent là encore la mise en charge continue des parcs en cours d’année au lieu de la rotation. On constate donc, dans les parties non dessouchées, un envahissement du Punicum pteramoides. Les parcelles dessouchées subissent 2 ou 3 passages par an de rotary-cutter qui éliminent rejets et refus et remèdient d’une manière efficace aux inconvénients de l’absence des feux et de la non-rotation. Le rotary-cutter est actuellement en élevage semi-extensif le seul appareil utilisable.

Développement arboré spécifique :

Sans nous étendre sur ce point, nous devons signaler certaines espèces apparaissant ou se répandant dans les paddocks où les feux sont peu violents ou absents.

Dans les paddocks granitiques sillonnés de galeries, de nombreuses espèces appartenant à la famille des Rubiaceae et au genre *Mabea* se répandent, ce qui est normal. Mais dans l’ensemble des paddocks on doit signaler l’apparition par ordre d’importance décroissante de :

- *Harungana madagascariensis*
- *Messa* sp.
- *Vernonia* sp. (dont *N’gaoundereensis* et *amydalina*).
- *Pagara tesmanii* (surtout dans les sols granitiques).
- *Croton macrostachys*
- *Steganotaenia araliacea*
- *Phyllanthus* sp.
- *Ekebergia creagolans* (en sols basaltiques surtout).

Toutes ces espèces sont relativement sensibles aux feux et leurs passages répétés les font disparaître. Une charge en bétail suffisante (450 à 500 kg à l’hectare) en saison des pluies, semble également capable de limiter l’envahissement ligneux, surtout associé à un feu violant tous les 3 ou 4 ans à la fin des périodes de mise en différe. Pourtant le pâturage apparaît souvent comme un facteur de reforestation, de reprise des terrains par des espèces de la forêt.

L’explication semble être la suivante : lorsque les terrains de parcours sont correctement chargés, ils se présentent au moment des feux avec trop peu d’herbe pour que la végétation ligneuse soit sérieusement endommagée. Mais alors, si les sols sont riches, la charge du bétail sera assez élevée pour que ce dernier fasse regreffer tout de même les éléments forestiers. Sur les sols à faible productivité pastorale, les animaux trop peu nombreux n’arrivent pas à freiner le développement arboré. Trop peu d’arbrisseaux, absence ou faiblesse des feux se traduisent par un envahissement arboré des terrains de parcours pauvres. Dans les terrains riches, les charges élevées peuvent être supportées assez longtemps pour que l’action du cheptel vienne à bout des éléments ligneux qui ont par endroits complètement disparu. On arrive alors, si le pâturage se poursuit sans repos et sur les terrains peu accidentés, à une savane nue à *Sporobolus pyramidalis* (Dschang, Kounden, Est N’gaoundéré) où le relief est accusé à un sol dénudé dans une proportion plus ou moins importante (Banyo par exemple).

Il apparaît donc que si pour les sols riches le simple traitement pastoral (charge, période de « différe », feux) peut laisser espérer un maintien dans un état correct des terrains de parcours, pour les sols pauvres le maintien en état pourra exiger autant de fréquentes « mises en différe » (un an sur 2 peut-être) parfois ainsi des interventions humaines de débroussaillage.

Productivité en Bois.

Nous n’avons tenu compte pour faire les calculs suivants que des espèces sensées être passées d’une catégorie inférieure dans une catégorie

Une honte de Cassia stimone.
supérieure. Les rejets qui fournissent un cubage négligeable malgré leur grand nombre n'ont pas été considérés.

La production de bois dans ces conditions varie de 6,5 à 12 stères par hectare et par an pour les terrains granitiques compte tenu des galeries, nombreuses dans ces terrains. La moyenne ressort à 10 stères de 215 kg par hectare et par an.

Pour les terrains basaltiques, les chiffres varient de 1 à 6 stères soit 4 stères en moyenne par hectare et par an.

Ces grosses différences correspondent bien en fait à l'aspect présenté par ces deux sortes de terrains, car les zones granitiques paraissent, en effet, plus boisées que les basaltiques quelles qu'en soient les raisons liées au passé ou au présent.

L'explication donnée plus haut à l'envahissement ligneux des terrains de parcours pauvres s'appuie d'ailleurs en partie sur ces résultats.

B. — ESSAIS DE HAIES VIVES

Une exploitation rationnelle des pâturages exige, cela est évident, une possibilité de contrôle des traitements (charges, rotations, périodes différencées, feux, etc...). Pour cela il est nécessaire d'avoir des parcelles aussi bien définies que possible et traitées, par l'endeau, comme il en aura décidé. En élevage extensif, des limites naturelles peuvent être suffisantes, le droit de propriété évitera l'intrusion non prévue de troupeaux étrangers à des moments inopportun. Mais s'il n'existe aucun droit de propriété il est absolument nécessaire de délimiter par des clôtures les différentes parcelles d'un pâturage qu'un troupeau déterminé devra exploiter. On se rend heureusement bien compte que, du fait même d'une absence de propriété, toute amélioration du fond, tout investissement de base et en particulier toute installation de clôture sont impossibles. Il a néanmoins été entrepris à la Station fourragère une étude d'implantation de haies vives nous permettant d'établir une technique qui pourra être vulgarisée lorsque les conditions sociales seront favorables.

Qualités demandées à une haie vive.

Dans l'état actuel des choses une haie vive devrait :

- être rapidement installée sans trop de travail.
- être bon marché.
- être infranchissable au bétail.
- ne pas demander d'entretien et n'être pas envahissante.
- ne pas être sensible aux feux de brousse aux termites et à la dent du bétail.
- accepter de fournir du bois de feu et des fruits.
- faire office de brise-vent.
Cette haie n'a pas encore été découverte, mais dans la mesure où on accepte de lui sacrifier soins et travail, il est possible d'obtenir en quelques années un obstacle efficace.

Programmes d'études :

Compte tenu de la nature sarmenteuse des épineux utilisables en Adamaoua, le principe a été de rechercher à associer une espèce support à un épineux. Sur ces bases il fallait étudier :
- La nature des essences à utiliser.
- Le mode de préparation du sol.
- Le mode de plantation.
- L'entretien à apporter et les précautions d'installation.
- Le résistance au bétail.

a) Les principales essences utilisées, locales ou introduites sont :

- **Espèces supports** :
 - *Cassia siamea*
 - *Eucalyptus divers*
 - *Sweatia brochystachya*
 - *Gmelina arborea*
 - *Polidium guajava*
 - *Albizia moluccana*
 - *... cortorta*
 - *... zygia*
 - *Spondias multipl *
 - *Mandatea sp.*
 - *Maclura pomifera*
 - *Moringa ppongisperma*
 - *Acacia sieberiana*
 - *... campylacantha*

- **Espèces épineuses sarmenteuses ou buissonnantes** :
 - *Caesalpinia sapon*
 - *Bougainvillea giabra*
 - *Parkinsonia aculeata*
 - *Acacia ataxacantha*
 - *... farnesiana*
 - *... scorpoides*
 - *... flovo*
 - *... horrida*
 - *... heterophylla*
 - *Bambou épineux*
 - *Dongulis caffra*
 - *Rhigozi amalouscariensis*
 - *Jatropha curcas*, (Pignon d’Inde).

b) Le sol fut préparé comme suit :
- Désherbage-défichage et
- Labour au Rome-plough sur 8 m de large et sous-solage, ou tous à la main ou à la tarière.

c) Mode de plantation.

Installation en 3 lignes à 1 m l’une de l’autre ; une ligne d’épineux de part et d’autre d’une ligne centrale de supports à 2 m les uns des autres. Les épineux sont à des intervalles de 1 m sur la ligne. Seul le Caesalpinia fut installé en semis direct avec succès ; toutes les autres espèces furent mises en paniers d’herbe ou en stumps.

d) Entretien.

A l’intérieur, de part et d’autre, 3 ou 4 passages de pulvérisateur à disque la première et la deuxième année et 2 la troisième. A l’intérieur, nettoyage manuel de même fréquence. En outre, protection complète du bétail les premières années et du feu à peu près en permanence, un feu précoce courant accidentel n’étant pas catastrophique.

Résultats :

La majeure partie des haies a été installée de 1955 à 1957 et fin 1958 ; déjà des conclusions, qui se sont confirmées, pourraient être tirées :

Essences à retenir : Seules subsistent les Ficus, le Gmelina, l’*Albizia coriaria*, le *Cassia siamea* et le Goyavier avec le Pignon d’Inde, l’*Acacia ataxacantha* et le Caesalpinia sapon surtout. Toutefois, le *Cassia* et le Caesalpinia se complètent assez mal car si le Caesia est bienvenu, il étouffe le Caesalpinia et la haie n’est pas infranchissable. Le Caesalpinia en l’absence du Cassia comme support a d’autre part du mal à se maintenir.

Il semble bien en tout cas que l’on doive renoncer à introduire de grands arbres dans les haies et accepter de se priver ainsi d’un important effet brise-vent.

Il ne semble pas y avoir de différences significatives dues au mode d’implantation. Peut-être un préjugé favorable pour le sous-solage qui, en définitive d’ailleurs, revient moins cher. En combinant les différents facteurs de nombreux arrangements ont été imaginés en particulier en 1957 où 80 types de haies furent essayés. Il ne subsiste dans ces haies que les essences suivantes :

- *Cassia*
- *Caesalpinia*
- *Pignon d’Inde*
- *Albizia coriaria*
- *Albizia zygia*
- *Sweatia*
- *Acacia ataxacantha*
- *Acacia farnesiana* qui reste nain et fruitifère
- *... horrida*
- *Goyavier.*

En outre, s’introduisent quelques essences locales (*Annona, Enado, Vernonio*, etc...) et surtout *Mimosa aspera* extrêmement envahissant alors que pratiquement aucune des autres espèces ne représente une génie à ce point de vue. Il n’est hélas pas un obstacle infranchissable pour le bétail. Sont à conseiller en définitive et à associer au Caesalpinia et à l’*Acacia ataxacantha* les supports suivants :

- *Goyavier*
- *Pignon d’Inde*
- *Sweatia — croissance très lente ...*
- *Albizia coriaria* (croissance lente).
Notons que la haie la plus dense et la plus efficace a été installée avec des Moringe qui a totalement disparu mais a sûrement permis à Caesalpinia de s'installer. Ce dernier subsiste seul maintenant. Les Albizia et Sweltia semblent avoir joué le même rôle car les pieds qui subsistent sont petits et souffrent de côté d’un Caesalpinia vigoureux. Une très belle haie particulièrement efficace a pu être observée chez un particulier. Elle est constituée par une rangée de Caesalpinia parallèle à une rangée de bougainvillées située à 2 m. Les deux espèces s'appuient l'une sur l'autre mais ne créent aucune gêne sur leurs faces extérieures. En sols riches ce type de haie semble fort recommandable.

Si l'avenir de la Station le permet, des essais seront entrepris sur ce principe de 2 rangs assez espacés et évitant l'étouffement de l’un des éléments.

Compte tenu des exigences en travail et soins de tous les instants que nécessite l'installation d'une haie (et cela ne vaut pas qu'en Afrique) il est probable que les haies se multiplifieront d'abord chez les agriculteurs qui marqueront ainsi leur droit de propriété lorsque le moment en sera venu. Ces haies éviteront les intrusions du bétail et pourront être un facteur très efficace de conservation des sols. Les haies Bamiléki ont pu montrer à cet égard quelles étaient leurs possibilités de rester la terre. La haie vive est incontestablement un élément d'exploitation intensive du sol et nous en sommes en Adamaoua, à quelques exceptions près, au mode d'élevage le plus extensif qui soit : le nombre des bergers diminue sans cesse. Le nombre des vrais bergers est encore plus modeste, les troupeaux vont pratiquement où ils veulent et il n'existe aucun chien de berger capable de rétablir la situation.

En matière d'élevage semi-extensif (qui commence à se développer) il est certain que les clôtures en barbelés et fils lisses continueront à prévaloir. Elles n'ont pas la pérennité des haies mais l'utilisation des piquets vivants est susceptible de bien améliorer ce point particulier. Les Plectus divers, Lannea acida et microcarpa et Ergythrina divers (E. signoides) ont fait leurs preuves. Pendant quelques années, des remplacements sont sans doute nécessaires, mais le résultat en vaut la peine.

Ces piquets en outre ne craignent pas les feux, beaucoup moins même que les fils de fer galvanisés qui ne supportent pas un gros échauffement et en définitive même ces clôtures sont à protéger des feux.

Dans les zones sahel-soudaniennes, outre les Plectus et Lannea peuvent être signalées Euphorbia balsamifera et Commiphora africana. D'une manière générale la mise en place des boutures doit être effectuée au moins 1 mois avant la saison des pluies. En zones sahéliennes même, Euphorbes et Commiphora ne craignent pas d'être installés au mois d'avril pourtant excessivement chaud et sec.

Les recherches en matière de haies se poursui-