INTRODUCTION
D’EUCALYPTUS CLOEZIANA
AU CONGO

Pointe-Noire - Parcelle 77.13

par
J.-M. BOUVET
Ingénieur de Recherches au C.T.F.T. Congo

et
J.-C. DELWAULLE
Directeur du C.T.F.T. Congo

SUMMARY
THE INTRODUCTION OF EUCALYPTUS CLOEZIANA IN THE CONGO AT POINTE NOIRE, PLOT 77-13

The earliest attempts to introduce Eucalyptus cloeziana in the Congo were made at Loandjili in 1956 and 1963. The good results obtained led research workers of the C.T.F.T. in the Congo to introduce many other new provenances. Altogether 18 Australian provenances were tested, and the local provenance, derived from the Loandjili introduction in 1963, was added to them for purposes of comparison. This was the most comprehensive trial project undertaken up to that time.

The study of this trial at Pointe Noire shows the wide genetic variability and the remarkable performance of E. cloeziana. Provenances from the South Queensland coastal area (N.E. Gympie and Hungry Hills) and the North Queensland coastal area (Paluma, Cardwell, Cooktown, Mt Tolbert) are the most worth-while for the region of Pointe Noire.

The trials also covered the study of intra-provenence variability, inter-descendence variation, and the obtaining of quality saplings for the plantation of large areas.

RESUMEN
INTRODUCCIÓN DE EUCALYPTUS CLOEZIANA EN EL CONGO — POINTE NOIRE — PARCELA 77-13

Las pruebas preliminares de introducción de Eucalyptus cloeziana en el Congo se han llevado a cabo en Loandjili, en 1956 y 1963. Debido a los interesantes resultados conseguidos, los Investigadores del C.T.F.T.-Congo han emprendido, una vez que en tu estudio de su alcance, la introducción de nuevas y numerosas procedencias de diverso origen. En total, se han sometido a prueba 18 procedencias y la procedencia local, derivada de la introducción realizada en Loandjili en 1963 ha venido a completar estas pruebas a título de comparación. Todo ello ha constituido el dispositivo de pruebas más complejo existente hasta la fecha.

El estudio de este dispositivo, establecido en Pointe Noire, ha permitido poner de manifiesto la gran variabilidad genética y las destacadas características de E. cloeziana.

Las procedencias del Sur Queensland costero (N.E — Gympie y Hungry hills) y del Norte Queensland costero (Paluma, Cardwell, Cooktown, Mt Tolbert) son aquellas que mayor interés presentan para la región de Pointe Noire.

También se han referido estas pruebas al estudio de la variabilidad entre procedencias, la variación entre descendencias y, asimismo, la obtención de plantas de calidad para la plantación de grandes superficies.
INTRODUCTION

La croissance régulière et prolongée de la plantation de 1963, la forme satisfaisante des arbres, les qualités technologiques reconnues de l’Eucalyptus cloeziana et notamment sa durabilité ont amené le C.T.F.T. Congo à s’intéresser d’une manière plus précise à cette espèce et à introduire de nombreuses provenances.

Ce sont les résultats actuels de cet essai que nous présentons ci-après.

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluviométrie</td>
<td>166,8</td>
<td>204,8</td>
<td>230,4</td>
<td>191,2</td>
<td>88,7</td>
<td>6,3</td>
<td>2,1</td>
<td>15,8</td>
<td>12,7</td>
<td>75,1</td>
<td>178,6</td>
<td>142,2</td>
</tr>
<tr>
<td>Température</td>
<td>26,4</td>
<td>26,8</td>
<td>27,1</td>
<td>27,0</td>
<td>25,8</td>
<td>23</td>
<td>21,4</td>
<td>21,9</td>
<td>23,5</td>
<td>25,3</td>
<td>25,9</td>
<td>26,1</td>
</tr>
</tbody>
</table>

Pluviométrie moyenne annuelle : 1.306 mm
Pluviométrie minimale annuelle enregistrée : 299 mm

CARACTÉRISTIQUES DE L’ESSAI 1977

LES DIFFÉRENTES PROVENANCES

L’essai comprend dix-huit provenances australiennes auxquelles a été adjointe une provenance locale (Loandjili - Parcelle 63.11).

Chacune des provenances est représentée par un nombre de descendances variable (1 à 10).

Le tableau 1 donne, pour chaque provenance, son numéro de récolte, la localisation du lieu d’origine, le numéro du site, la latitude, la longitude, et l’altitude de celui-ci.

Les numéros de site sont ceux donnés par J. W. Turnbull. La carte présentée ci-contre reprend ces numéros et délimite les cinq grandes régions de provenances définies par cet auteur et sur lesquelles nous reviendrons plus loin (les sites numéros 1, 2 et 5 : Gympie et Monto ne sont pas représentés dans les provenances testées en 1977).

MISE EN PLACE DE L’ESSAI

Chaque provenance a été mise en place par descendances séparées. A chaque placeau correspond donc une descendance représentée par $5 \times 5 = 25$ individus mis en place à l’écartement 3×3 m.

Il y a deux répétitions sauf pour la provenance locale qui n’est représentée qu’une fois.

L’essai a été implanté, en novembre 1977, au début de la saison des pluies.

1 — Gympie-Woondum
2 — Gympie-Woondum
3 — Nord-Est Gympie
(Vettrans)
4 — W. Theodore
5 — Monto
6 — Hungry Hills
7 — Blackdown Tableland
8 — Fairview St. Ravenshoe
9 — Jericho
10 — Carnarvon
11 — Lake Elphinstone
12 — Eungella
13 — Patuna Mt. Spec.
14 — Cardwell
15 — Lappa
16 — Reedy St George Creek
17 — S. Helenvale Mt Tolbert
18 — Bakersville
19 — Ravenshoe
TABLEAU 1
LES PROVENANCES D'É. CLOEZIANA, INTRODUCTIONS 1977

<table>
<thead>
<tr>
<th>N° de récolte</th>
<th>N° des descendances</th>
<th>Localisation</th>
<th>N° de site</th>
<th>Latitude S</th>
<th>Longitude E</th>
<th>Altitude (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12193</td>
<td>74</td>
<td>W. Théodore</td>
<td>4</td>
<td>25° 1’</td>
<td>140° 45’</td>
<td>355</td>
</tr>
<tr>
<td>12195</td>
<td>75 à 84</td>
<td>Hungry Hills</td>
<td>6</td>
<td>25° 18’</td>
<td>151° 22’</td>
<td>310</td>
</tr>
<tr>
<td>12196</td>
<td>85 à 94</td>
<td>Blackdown Tableland</td>
<td>7</td>
<td>23° 14’</td>
<td>149° 7’</td>
<td>400</td>
</tr>
<tr>
<td>12198</td>
<td>95 à 98</td>
<td>Jericho</td>
<td>9</td>
<td>24° 14’</td>
<td>146° 13’</td>
<td>400</td>
</tr>
<tr>
<td>12199</td>
<td>99 à 108</td>
<td>Carnarvon</td>
<td>10</td>
<td>24° 48’</td>
<td>148° 29’</td>
<td>360</td>
</tr>
<tr>
<td>12200</td>
<td>109 à 112</td>
<td>Lake Elphinstone</td>
<td>11</td>
<td>21° 33’</td>
<td>148° 14’</td>
<td>380</td>
</tr>
<tr>
<td>12201</td>
<td>113 à 122</td>
<td>Eungella</td>
<td>12</td>
<td>21° 13’</td>
<td>148° 24’</td>
<td>740</td>
</tr>
<tr>
<td>12202</td>
<td>123 à 126</td>
<td>Paluma</td>
<td>13</td>
<td>19° 1’</td>
<td>146° 17’</td>
<td>330</td>
</tr>
<tr>
<td>12204</td>
<td>133 à 143</td>
<td>Paluma</td>
<td>13</td>
<td>19° 1’</td>
<td>146° 17’</td>
<td>330</td>
</tr>
<tr>
<td>12205</td>
<td>143 à 150</td>
<td>Lappa</td>
<td>15</td>
<td>17° 22’</td>
<td>144° 52’</td>
<td>650</td>
</tr>
<tr>
<td>11641</td>
<td>151 à 160</td>
<td>Reedy St. George Creek</td>
<td>16</td>
<td>16° 21’</td>
<td>144° 44’</td>
<td>700</td>
</tr>
<tr>
<td>10961</td>
<td>161 à 170</td>
<td>Fairview-Ravenshoe</td>
<td>8</td>
<td>24° 21’</td>
<td>147° 5’</td>
<td>400</td>
</tr>
<tr>
<td>12208</td>
<td>171</td>
<td>N.E. Gympie</td>
<td>3</td>
<td>26° 7’</td>
<td>152° 42’</td>
<td>76</td>
</tr>
<tr>
<td>10956</td>
<td>172</td>
<td>Ravenshoe</td>
<td>19</td>
<td>17° 42’</td>
<td>145° 29’</td>
<td>940</td>
</tr>
<tr>
<td>10957</td>
<td>173</td>
<td>S. Helenevala</td>
<td>17</td>
<td>15° 45’</td>
<td>145° 15’</td>
<td>170</td>
</tr>
<tr>
<td>12206</td>
<td>174 à 178</td>
<td>Mt Tolbert</td>
<td>17</td>
<td>15° 45’</td>
<td>145° 15’</td>
<td>800</td>
</tr>
<tr>
<td>12207</td>
<td>179 à 182</td>
<td>Bakerville</td>
<td>18</td>
<td>17° 23’</td>
<td>145° 15’</td>
<td>800</td>
</tr>
<tr>
<td>9785</td>
<td>183 à 192</td>
<td>Cardwell</td>
<td>14</td>
<td>18° 17’</td>
<td>145° 55’</td>
<td>120</td>
</tr>
<tr>
<td>Locale</td>
<td>197</td>
<td>Loandjill</td>
<td>—</td>
<td>4° 49’</td>
<td>11° 54’</td>
<td>70</td>
</tr>
</tbody>
</table>

RÉSULTATS DES MENSURATIONS À 5 ANS 1/2

TABLEAU 2
VALEURS GLOBALES AU NIVEAU DES PROVENANCES. MENSURATIONS À 5,5 ANS

<table>
<thead>
<tr>
<th>Provenance</th>
<th>N° de provenance</th>
<th>N° de site</th>
<th>Nombre de desc.</th>
<th>H m</th>
<th>G m²/ha</th>
<th>P m²/ha/an</th>
<th>% reprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Théodore</td>
<td>12.193</td>
<td>4</td>
<td>1</td>
<td>14,9</td>
<td>11,6</td>
<td>15,6</td>
<td>78</td>
</tr>
<tr>
<td>Hungry Hills</td>
<td>12.195</td>
<td>6</td>
<td>10</td>
<td>18,1</td>
<td>16,1</td>
<td>26,7</td>
<td>82</td>
</tr>
<tr>
<td>Blackdown Tableland</td>
<td>12.196</td>
<td>7</td>
<td>15,9</td>
<td>15,9</td>
<td>13,5</td>
<td>20,4</td>
<td>86</td>
</tr>
<tr>
<td>Jericho</td>
<td>12.198</td>
<td>9</td>
<td>11,1</td>
<td>11,1</td>
<td>9,1</td>
<td>14,3</td>
<td>83</td>
</tr>
<tr>
<td>Carnarvon</td>
<td>12.199</td>
<td>10</td>
<td>15,2</td>
<td>15,2</td>
<td>10,8</td>
<td>14,9</td>
<td>83</td>
</tr>
<tr>
<td>Lake Elphinstone</td>
<td>12.200</td>
<td>11</td>
<td>12,9</td>
<td>12,9</td>
<td>11,3</td>
<td>13,9</td>
<td>85</td>
</tr>
<tr>
<td>Eungella</td>
<td>12.201</td>
<td>12</td>
<td>14,5</td>
<td>14,5</td>
<td>12,9</td>
<td>18,8</td>
<td>82</td>
</tr>
<tr>
<td>Paluma</td>
<td>12.202</td>
<td>13</td>
<td>14,9</td>
<td>14,9</td>
<td>13,3</td>
<td>20,4</td>
<td>86</td>
</tr>
<tr>
<td>Paluma</td>
<td>10.270</td>
<td>13</td>
<td>15,3</td>
<td>15,3</td>
<td>13,5</td>
<td>20,4</td>
<td>86</td>
</tr>
<tr>
<td>Lappa</td>
<td>12.204</td>
<td>15</td>
<td>10,9</td>
<td>10,9</td>
<td>7,0</td>
<td>6,3</td>
<td>65</td>
</tr>
<tr>
<td>Reedy St. George Creek</td>
<td>12.205</td>
<td>16</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>17,6</td>
<td>84</td>
</tr>
<tr>
<td>Fairview-Ravenshoe</td>
<td>11.641</td>
<td>8</td>
<td>13,1</td>
<td>13,1</td>
<td>11,1</td>
<td>18,8</td>
<td>82</td>
</tr>
<tr>
<td>N.E. Gympie</td>
<td>10.641</td>
<td>3</td>
<td>17,6</td>
<td>17,6</td>
<td>16,5</td>
<td>23,5</td>
<td>87</td>
</tr>
<tr>
<td>Ravenshoe</td>
<td>12.208</td>
<td>19</td>
<td>14,8</td>
<td>14,8</td>
<td>14,8</td>
<td>19,3</td>
<td>74</td>
</tr>
<tr>
<td>S. Helenevala</td>
<td>10.956 et 57</td>
<td>2</td>
<td>12,9</td>
<td>12,9</td>
<td>12,9</td>
<td>15,6</td>
<td>85</td>
</tr>
<tr>
<td>Mt Tolbert</td>
<td>12.206</td>
<td>17</td>
<td>14,9</td>
<td>14,9</td>
<td>14,9</td>
<td>16,8</td>
<td>87</td>
</tr>
<tr>
<td>Bakerville</td>
<td>12.207</td>
<td>18</td>
<td>12,3</td>
<td>12,3</td>
<td>12,3</td>
<td>7,2</td>
<td>77</td>
</tr>
<tr>
<td>Cardwell</td>
<td>9.785</td>
<td>14</td>
<td>17,3</td>
<td>17,3</td>
<td>17,3</td>
<td>18,9</td>
<td>85</td>
</tr>
<tr>
<td>Loandjill (*)</td>
<td>locale</td>
<td>—</td>
<td>20,7</td>
<td>20,7</td>
<td>20,7</td>
<td>23,0</td>
<td>92</td>
</tr>
</tbody>
</table>

(*) Un seul placeau.

Le tableau 2 représente les résultats, au niveau provenances, des mensurations effectuées en avril 1983 à 65 mois.

Ces résultats sont, au niveau d’une répétition, la moyenne des résultats enregistrés au niveau des descendances et nous ne présentons que la moyenne des deux répétitions, ceci dans un souci de clarté.

Chaque provenance étant représentée par un nombre
de descendants variable, les valeurs trouvées au niveau des provenances n’ont donc pas réellement le même « poids » et c’est pourquoi nous avons noté le nombre de descendants que comprend chaque provenance. Les valeurs présentées concernent la hauteur moyenne H exprimée en mètres, la surface terrière G ramenée à l’hectare en m2/ha, la production moyenne exprimée en m3/ha/an, nous avons utilisé un tarif de cubage non directement adapté (*) à *E. cloeziana* et les chiffres exprimés ont surtout une valeur relative.

ANALYSE DES RÉSULTATS AU NIVEAU DES PROVENANCES

DÉTERMINATION DE GROUPES DE PROVENANCES EN FONCTION DE LA PRODUCTION

Lorsqu’on trace le diagramme de P en fonction de G pour vérifier que notre production est sensiblement proportionnelle à la Surface Terrière, on aboutit d’une part à une corrélation très satisfaisante :

$$P = 1.9 \times G - 6$$

P en m3/ha/an et G en m2/ha, mais d’autre part on met bien en évidence quatre groupes de provenances (graphique 1).

UNE PROVENANCE TRÈS PRODUCTIVE

La provenance locale culmine avec un peu plus de 40 m3/ha/an à 5,5 ans ce qui est considérable. Cette provenance locale serait issue de graines originales de la région de Gympie (?).

Les résultats des mensurations de la parcelle origine à l’âge de 16 ans sont les suivants :

- Hauteur totale : 27 m
- Diamètre moyen à 1,5 m : 24,2 cm
- Nombre de tiges à l’hectare : 950
- Production : 21,1 m3/ha/an.

(*) Tarif de cubage à deux entrées établi pour E. PF1 (Eucalyptus hybride).

![Graphique N° 1](image)

Production en fonction de la surface terrière détermination de familles de provenance
Deux remarques peuvent être formulées en ce qui concerne cette provenance locale :

— elle n’est représentée que par une seule descendance et n’est pas répétée (un seul plateau). La valeur trouvée est donc sujette à caution mais, même avec cette réserve, la provenance locale est une très bonne provenance ;

— ceci nous amène à une seconde remarque : très fréquemment, dans un essai provenance, la provenance locale présente une certaine supériorité par rapport aux nouvelles introductions. Il semblerait qu’en une seule génération, il y ait déjà une certaine adaptation au milieu.

Un groupe de provenances ayant une productivité comprise entre 23 et 32 m³/ha/an et une surface terrière comprise entre 16 et 20 m² (groupe A)

Ces provenances sont les suivantes :

3 : N.E. Gympie
13 : Paluma (deux numéros de récolte)
14 : Cardwell
6 : Hungry Hills
17 : Mt Tolbert.

Un groupe de provenances présentant des performances moyennes ; 10 < G < 14 m³/ha et 13 < P < 21 m³/ha/an (groupe B)

Ce sont les provenances 7 Blackdown Tableland, 19 Ravenshoe, 12 Eungella, 17 S. Heennifer, 4 W. Theodore, 10 Carnarvon, 11 Lake Elphinstone.

On remarquera que du Site 17, dans la région de Cooktown, sont originales deux provenances qui ont reçu, dès l’origine, des appellation distinctes : Mt Tolbert et S. Heennifer. Ces deux provenances semblent se distinguer du Congo, elles ne rentrent pas dans le même groupe de productivité ; il faut cependant remarquer que la provenance S. Heennifer n’est représentée que par deux descancements et il faut donc se montrer prudent en ce qui la concerne.

Un groupe aux performances très médiocres (groupe C)

8 Fairview-Ravenshoe, 18 Bakerville, 16 Reedy St. George Creek, 15 Lappa, 9 Jericho.

On remarque que c’est dans ces provenances que la mortalité a été la plus forte, preuve d’une moins bonne adaptation aux conditions écologiques locales.

Il faut d’ailleurs dire que ces provenances ont généralement un feuillage peu dense ; elles couvrent mal le sol d’où une concurrence active de la strate herbacée qui limite d’autant les performances de ces provenances.

RELATION AVEC D’AUTRES CRITÈRES (graphiques 2, 3 et 4)

Relation avec la latitude

Le graphique 2 répartit les provenances en fonction de la latitude du lieu d’origine et des productions. D’une manière curieuse nous constatons qu’il y a indépendance totale entre ces deux données. Les trois groupes australiens A, B et C s’étagent uniquement en fonction de la production.
Relation avec l'altitude

Le graphe 3 donne la répartition des provenances en fonction des productions et de l'altitude du lieu d'origine. Il existe une corrélation entre ces deux facteurs.

Les provenances productives (groupe A) sont originaires de zones d'altitude inférieure à 300 m alors que les moins productives (famille C) d'altitudes supérieures à 600 m.

Les deux seules provenances sortant un peu de la zone où altitude et production sont corrélées font partie de provenances de production moyenne. On remarquera que ces provenances, 17 S. Helenvale et 19 Ravenshoe ne sont représentées que par 2 ou même 1 seule descendance ce qui est insuffisant pour bien caractériser une provenance.

Relation avec la distance à la mer

Le graphe 4 représente la répartition des provenances en fonction de la production et de la distance à la mer (exprimée sous forme d'indice). Pour les provenances du Sud Queensland, on note un effet continental assez marqué : les provenances les plus côtières sont les plus productives. Cet effet n'est pas sensible pour les provenances du Nord, qui par ailleurs, sont peu éloignées des côtes.
CORRÉLATION AVEC LA CLASSIFICATION DE TURNBULL

Les grandes régions de provenance définies par TURNBULL sont les suivantes :

TABLEAU 3. — RÉGIONS DE PROVENANCES DÉFINIES PAR J. W. TURNBULL

<table>
<thead>
<tr>
<th>Site</th>
<th>Provenances</th>
<th>Latitude °S</th>
<th>Longitude °E</th>
<th>Altitude (en m)</th>
<th>Grandes régions de provenances définies par J. W. TURNBULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>N.-E. Gympie</td>
<td>26° 7'</td>
<td>152° 42'</td>
<td>76</td>
<td>Sud Queensland côtier</td>
</tr>
<tr>
<td>6</td>
<td>Hungry Hills</td>
<td>25° 18'</td>
<td>151° 22'</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Monto</td>
<td>25°</td>
<td>151°</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>W. Theodore</td>
<td>25° 1'</td>
<td>149° 45'</td>
<td>355</td>
<td>Centre Queensland intérieur</td>
</tr>
<tr>
<td>10</td>
<td>Carnarvon</td>
<td>24° 48'</td>
<td>148° 29'</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fairview St Rovershoe</td>
<td>24° 21'</td>
<td>147° 5'</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Jericho</td>
<td>24° 14'</td>
<td>146° 13'</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Blackdown Tableland</td>
<td>23° 14'</td>
<td>149° 7'</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Lake Elphinstone</td>
<td>21° 33'</td>
<td>148° 14'</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Eungella</td>
<td>21° 13'</td>
<td>148° 24'</td>
<td>740</td>
<td>Nord Queensland côtier</td>
</tr>
<tr>
<td>13</td>
<td>Paluma Mt Spec.</td>
<td>19° 1'</td>
<td>146° 17'</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cardwell</td>
<td>18° 17'</td>
<td>145° 35'</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Ravenshoe</td>
<td>17° 42'</td>
<td>145° 29'</td>
<td>940</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Cooktown Mt Tolbert</td>
<td>15° 45'</td>
<td>145° 15'</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Bakerville</td>
<td>17° 23'</td>
<td>145° 15'</td>
<td>800</td>
<td>Nord Queensland intérieur</td>
</tr>
<tr>
<td>15</td>
<td>Lappa</td>
<td>17° 22'</td>
<td>144° 52'</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reedy St George Creek</td>
<td>16° 21'</td>
<td>144° 44'</td>
<td>700</td>
<td>Provenance intermédiaire entre N.Q. côté et N.Q. intérieur</td>
</tr>
</tbody>
</table>

Nos trois groupes de provenances se répartissent parmi ces grandes régions de provenances comme suit :

Sud Queensland côtier.

Bonne région pour les provenances puisque les provenances venant de cette région sont classées dans la groupe A.

Nord Queensland côtier.

13, 14 et 17 font partie du groupe A par contre 12
et 19 font partie du groupe B mais il s’agit de récoltes effectuées en altitude (740 et 940 m). Retenons que le Nord Queensland cèleri est une bonne origine de graines pour les peuplements de basse altitude.

Centre Queensland intérieur.

Cette région donne des provenances se répartissant entre les groupes B et C. C’est une région ne nous convenant pas.

Nord Queensland intérieur et Reedy S’ George Creek.

Ces provenances sont franchement mauvaises puisqu’on les retrouve toutes dans le groupe C.

ANALYSE DES RÉSULTATS AU NIVEAU DES DESCENDANCES

VARIABILITÉ INTRA PROVENANCE – PERFORMANCE DE CERTAINES DESCENDANCES

A ce niveau seules peuvent nous intéresser les très bonnes provenances représentées par un nombre de descendances suffisant.

Ceci nous conduit à ne nous intéresser qu’aux provenances citées par le tableau 4, ci-contre.

Nous avons calculé les moyennes et les coefficients de variation au niveau des répétitions et au niveau global. Ces résultats sont donnés par le tableau 5.

Commentaires.

La provenance Cardwell est de loin la plus homogène au niveau des descendances. C’est une provenance qu’il serait loisible d’utiliser directement en plantation au Congo.

La provenance N.E. Gympie est déjà bien moins homogène. Il faut cependant dire que deux descendances ont une très mauvaise performance dans la répétition 1, descentance 163 avec 17,6 m³/ha/an et descentance 170 : 8,6 m³/an alors que ces descendances ont des performances correctes dans la seconde répétition.

Si nous retirons ces deux descendances, le coefficient de variation global passe de 27,4 à 16,5 et la moyenne de 31,6 à 33,9. La provenance Gympie est très nettement la meilleure mais les variations au niveau des descendances montrent que le travail de l’amélioration n’est pas terminé.

Pour la constitution de la provenance on aurait intérêt à supprimer de celle-ci les descendances 163 et 170 et peut-être aussi la 161 quitte à en inclure de nouvelles.

Au niveau de l’amélioration génétique de l’espèce, au Congo, on pourrait sélectionner à l’intérieur des descendances 166 et 169.

Les résultats de la provenance Paluma sont assez surprenants car les performances sont très différentes d’une répétition à une autre, ce qui entraîne une augmentation du « coefficient de variation » au niveau

Loandjili — Parcelle 77-13. Eucalyptus cloeziana, descentance 189 de Cardwell, âgés de 5 ans 1/2.

Photo Delvaux — Juillet 1983.
TABLEAU 4
LISTE DES PROVENANCES DONT NOUS ÉTUDEM LES DESCENDANCES

<table>
<thead>
<tr>
<th>N° du Site</th>
<th>Nom de la provenance</th>
<th>Production m³/ha/an</th>
<th>Nombre de desc.</th>
<th>Numéro des desc.</th>
<th>Localisation Turnbull</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>N.-E. Gympie</td>
<td>31,4</td>
<td>8 (*)</td>
<td>161 à 170</td>
<td>S Q Côtier</td>
</tr>
<tr>
<td>6</td>
<td>Hungry Hills</td>
<td>26,7</td>
<td>10</td>
<td>75 à 84</td>
<td>S Q Côtier</td>
</tr>
<tr>
<td>13</td>
<td>Paluma (**)</td>
<td>29,4</td>
<td>9</td>
<td>123 à 132</td>
<td>N Q Côtier</td>
</tr>
<tr>
<td>14</td>
<td>Cardwell</td>
<td>27,1</td>
<td>10</td>
<td>183 à 192</td>
<td>N Q Côtier</td>
</tr>
</tbody>
</table>

(*) 8 pour une répétition - 10 pour l’autre.
(**) Malgré deux numéros de provenance distincts, 10.270 et 12.204, toutes les données relatives à ces deux récoltes montrent qu’on peut les considérer comme constituant une seule et même provenance.

TABLEAU 5. — VALEURS DES MOYENNES ET COEFFICIENTS DE VARIATION RELATIFS AUX PRODUCTIONS DES MEILLEURES PROVENANCES

<table>
<thead>
<tr>
<th></th>
<th>1<sup>ère</sup> Rep.</th>
<th>2<sup>ème</sup> Rép.</th>
<th>Total</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>C.V.</td>
<td>M</td>
<td>C.V.</td>
<td>M</td>
</tr>
<tr>
<td>N.-E. Gympie</td>
<td>28,9</td>
<td>36,1 %</td>
<td>33,8</td>
<td>20 %</td>
<td>31,6</td>
</tr>
<tr>
<td>Hungry Hills</td>
<td>26,35</td>
<td>32,0 %</td>
<td>27,0</td>
<td>30,3 %</td>
<td>26,7</td>
</tr>
<tr>
<td>Paluma</td>
<td>24,3</td>
<td>19,9 %</td>
<td>34,5</td>
<td>14,4 %</td>
<td>29,4</td>
</tr>
<tr>
<td>Cardwell</td>
<td>26,5</td>
<td>10,4 %</td>
<td>27,7</td>
<td>10,1 %</td>
<td>27,1</td>
</tr>
</tbody>
</table>

global. Ceci démontre combien le dispositif est mal choisi (deux répétitions seulement et les descendances non réparties au hasard à l’intérieur des répétitions). Dans le cas présenté la 2^{ème} répétition est située sur un sol bien meilleur que la 1^{ère}.

Une telle constatation apporte une ombre à la validité des résultats. Si on ne considère, en effet, que la seconde répétition de Paluma, on obtient comme performance 34,5 m³/ha/an + 14,4 %, performance classant cette provenance en tête, avant Gympie. Rien ne nous prouve que le classement de Gympie n’est pas dû à la chance que peut avoir eu cette provenance de disposer de sols plus riches.

Au niveau de cette 2^{ème} répétition nous remarquerons l’assez bon coefficient de variation de cette provenance ainsi que l’excellente performance de la descendance 131 (42,37 m³/ha/an).

Avec des performances moyennes un peu plus basses et avec un coefficient de variation toujours élevé, Hungry Hills se classe après les provenances Gympie, Paluma et Cardwell.

Il faut remarquer que les deux répétitions présentent des valeurs voisines. L’hétérogénéité constatée est due en particulier aux fortes performances des descendances 80 et surtout 84 (40,25 et 42,87 m³/ha/an selon les répétitions) il y a là aussi matière à sélection.

Loandjii — Parcelle 77-13. Eucalyptus cloeziana, descendance 152 de Fairview Ravenshoe, âgées de 5 ans 1/2.

Photo Bovet — Juillet 1983.
TABLEAU 6. — DESCENDANCES AYANT UNE PRODUCTION SUPÉRIEURE À 40 m³/ha/an

<table>
<thead>
<tr>
<th>N° de site</th>
<th>Provenance</th>
<th>Répétition</th>
<th>Descendance</th>
<th>Performance</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>N.E. Gympie</td>
<td>2<sup>e</sup></td>
<td>169</td>
<td>46,8</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Hungry Hills</td>
<td>2<sup>e</sup></td>
<td>84</td>
<td>42,9</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>Paluma</td>
<td>2<sup>e</sup></td>
<td>131</td>
<td>42,4</td>
<td>100</td>
</tr>
<tr>
<td>X</td>
<td>Loandjili</td>
<td>2<sup>e</sup></td>
<td>197</td>
<td>40,6</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>Hungry Hills</td>
<td>1<sup>e</sup></td>
<td>84</td>
<td>40,3</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLEAU 7. — PRODUCTION DE PARCELLE MONOCLONALE À 54 MOIS (PARCELLE 77.14)

<table>
<thead>
<tr>
<th>Ecartement</th>
<th>Clone</th>
<th>P (m³/ha/an)</th>
<th>Age (mois)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m × 3 m</td>
<td>E. PF 1</td>
<td>1.41</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>E. 12 ABL × saligna</td>
<td>2.29</td>
<td>54</td>
</tr>
</tbody>
</table>

Classification des meilleures descendances.

Nous faisons figurer dans le tableau 6 les résultats des descendances ayant une production supérieure à 40 m³/ha/an.

Nous constatons que trois descendances étrangères sont supérieures à notre descendance locale.

Les chiffres témoignent de la forte croissance et de la bonne adaptation de certaines familles d'E. cloeziana.

GRAPHIQUE N°5

Croissance en hauteur des meilleures descendances en fonction de l'âge

PARCELLE 77.13 Loandjili

Répétition N°2

Nous avons par ailleurs tracé, pour certaines descen-
dances, les courbes donnant la hauteur en fonction de l'âge (graphique 5), la croissance en hauteur (mis à part la descendance 129) ne semble pas subir de ralentisse-
ment. Il faut s'attendre à une augmentation de la pro-
duction au cours des prochaines années.

CARACTÉRISTIQUES QUALITATIVES

Du point de vue qualitatif on note des variations importantes entre les descendances ;
- Hungry Hills (80, 84) : troncs sinueux, mauvais éla-
gage naturel ;
- Paluma (129, 131) : bonne rectitude, présence de
- fourche pour la 131, élagage naturel moyen ;
- N.E. Gympie (166, 169) : bonne rectitude, pas de
- fourche, élagage naturel satisfaisant ;
- Cardwell (190, 191) : bonne rectitude, pas de four-
- che, élagage naturel moyen.

PROJET D’AMÉLIORATION GÉNÉTIQUE D’E. CLOEZIANA

L’étude des résultats actuels de l’essai 1977 met en évidence, outre une provenance locale, quatre proven-
ances intéressantes, deux du Nord Queensland côtier (Paluma et Cardwell) et deux du Sud Queensland côtier (Hungry Hills et Gympie).

Par ailleurs, les travaux sur le bouturage d'Eucalyptus cloeziana ont montré que le bouturage de cette espèce était délicat et qu’il était assez peu probable qu’une méthode de multiplication en masse puisse être mise au point.

La pollinisation contrôlée, qui donne de bons résultats avec de nombreuses espèces d'Eucalyptus au Congo, est difficile, voire impossible avec E. cloeziana (fleurs minuscules, décalages importants dans la florai-
son au sein d'un même groupe d'inflorescences, couche
abondante).

Il ressort de ce qui précède que la pollinisation libre (du type entomophile) apparaît comme l’outil essentiel de l’amélioration génétique d’E. cloeziana.

VERGER A GRAINES DE CLONES

Il paraît intéressant de confronter les deux grandes populations mises en évidence (N et S Queensland) au sein d’un verger à graines de clones ; l’éloignement géo-
graphique entre les populations concernées pouvant recouvrir certaines différences dans la constitution des génomes et les croisements NQ × SQ peuvent bénéfi-
cier d’un effet d’hétérosis important.

C’est la raison pour laquelle nous avons sélectionné, dans l’essai 1977, un certain nombre de familles à l’intérieur des provenances intéressantes puis, au sein de chaque famille un individu particulièrement remarqua-
ble.

Ces clones sélectionnés vont faire l’objet de multiplica-
cation par greffage dans le but de mettre en place deux vergers.

Le Verger A où seront étudiées les origines Sud Queensland comme mères. Chaque mère étant entourée de huit individus greffés originaires du Nord Queens-
land selon un placeau élémentaire du type suivant.

SÉLECTION DES INDIVIDUS REMARQUABLES

<table>
<thead>
<tr>
<th>Provenance</th>
<th>Nord Queensland</th>
<th>Sud Queensland</th>
<th>Loandjili</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nbre d'individus sélectionnés</td>
<td>Paluma</td>
<td>Cardwell</td>
<td>Hungry Hills</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Loandjili — Parcelle 77-13. Eucalyptus cloeziana, descendance locale, âgés de 3 ans 1/2.

Photo Delvaux — Juillet 1983.

Le Verger A contiendra quinze placeaux élémentaires et testera cinq mères du Sud Queensland répétées trois fois.

Nous espérons ainsi, en récoltant sur les pieds mères, obtenir un effet d’hétérosis important dans les descendances.

VERGER A GRAINES DE FAMILLES

Deux raisons conduiront le C.T.F.T. Congo à réaliser un Verger à graines de familles dans les prochaines années :

— la réalisation du verger à clones dépendra avant tout de la réussite du greffage. Si les greffes se révèlent trop difficiles à réaliser l’élaboration d’un tel verger devra être abandonnée. Dans ces conditions seul le verger à partir de semis sera envisageable ;

— le souci de pouvoir fournir à moyen terme (15 ans), en quantité importante, des graines de bonne qualité pour d’éventuels reboisements.

Le verger sera constitué de 150 à 200 placeaux mono-arbres comprenant chacun de 20 à 25 individus (un représentant de chaque famille) ; la plantation sera effectuée à un écartement faible (2 m × 2 m).

A 2 ans on passera en éclaircie sélective en éliminant les mauvais individus. L’éclaircie devra être équilibrée de façon à sélectionner un nombre à peu près identique d’arbres par famille. Intensité 50 %.

A 5 ans une deuxième éclaircie sera réalisée selon le même principe.

Vers 8 ans une troisième éclaircie aura lieu selon le même principe. L’écartement de départ étant 2 m × 2 m, on aboutira ainsi à une surface par individu de 32 m² soit un écartement moyen de 5,5 m entre plants. Les premières récoltes auront ensuite lieu et permettront alors de tester le verger.

CONCLUSION

L’étude des provenances d’E. cloeziana implantées en 1977 à Pointe-Noire montre la grande variabilité génétique et les performances remarquables de cette espèce.
— L’étude de la corrélation entre la production et la surface terriére au niveau de chaque provenance met en évidence 4 grandes familles.
— Les variations de la production des provenances en fonction de critères géographiques montrent que les lieux de récoltes à basse altitude et, près de la côte fournissent de bons peuplements. La production n’est pas corrélée avec la latitude.
— L’étude de la variabilité intra-provenance pour les meilleures d’entre elles révèle plusieurs points :
 • La bonne homogénéité pour la provenance Cardwell, qu’il serait loisible d’utiliser directement en plantation au Congo ;
 • La variation inter-descendance importante pour N.E. Gympie et Hungry Hills qu’il sera intéressant de mettre à profit dans le cadre d’une amélioration génétique.

La méthode du bouturage industriel des E. hybrides (E. PF 1 ou E. 12 ABL × saligna) ne donnant que peu de résultats avec l’E. cloeziana, la voie sexuée reste, pour l’instant, le meilleur moyen d’obtenir un matériel de qualité sur des surfaces importantes.

C’est pourquoi, à partir des enseignements de l’essai 1977 nous envisageons de mettre en place, d’une part, des vergers à graines clonaux afin de bénéficier d’un éventuel effet hétérosis entre sujets appartenant à des populations éloignées et, d’autre part, un verger à graines de famille.

ANNEXE

CONDITIONS PÉDOLOGIQUES
DE LA RÉGION DE POINTE-NOIRE

Sols du périmètre de reboisement.

La région de Pointe-Noire est relativement homogène du point de vue étaphique.

Les sols du périmètre de reboisement sont de texture légère (sable), ne renfermant que très peu d’argile, et sont de plus appauvris en surface et sans structure définie. Très filtrants, leur capacité de rétention pour l’eau est faible, et leur dessèchement, tout du moins en surface, rapide.

Ces sols sont ainsi dénommés par les pédologues : sols ferrallitiques fortement désaturés, psammitiques, appauvris nodaux sur matériau sableux à sablo-argileux.
BIBLIOGRAPHIE

TURBELL (J. W.). — Provenance variation in E. cloeziana, F. MueLL.

Loandjili — Parcell 77-13. Eucalyptus cloeziana, descendance de Lappa, âgés de 5 ans 1/2.

Photo DELWAUlle — Juillet 1983.