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ABSTRACT. The paper addresses the question: how does
asymmetric competition for light affect the spatial pattern of
trees? It is based on an individual-based spatially explicit
model of forest dynamics, whose growth equations are de-
rived from gap models. The model is calibrated on a stand of
natural rainforest in French Guiana, where the tree pattern
exhibits regularity at short distances (< 10 m) and clustering
at medium distances (∼ 30 m). The model reproduces the
regularity but not the clustering. As mortality and recruit-
ment have been modeled so as to favor a random pattern, we
conclude that regularity emerges from the asymmetric com-
petition in the growth submodel. Also the scale at which reg-
ularity appears is linked to the range of interactions between
trees.

KEY WORDS: Forest dynamics, gap models, spatial pat-
tern, asymmetric competition, French Guiana.

1. Introduction. Models of forest stand dynamics can be classi-
fied according to the level of description they rely on: stand models
are based on stand characteristics such as total basal area, density;
distribution models rely on distributions of tree characteristics such as
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diameter or height distribution or classes; tree models follow the tra-
jectory of every single tree. Among the latter, a distinction is gener-
ally made between distance-dependent and distance-independent mod-
els (Bruce and Wensel [1988]). It relates to how interactions between
trees are considered: in distance-dependent models, the location of ev-
ery tree is known, so that a neighborhood of interacting trees around
a subject tree can be explicitly stated. In distance-independent mod-
els, on the contrary, there is no spatial information at the tree level, so
that interactions between trees result from an averaging procedure over
space. Distance-independent models are generally simpler and require
less calculation than distance-dependent models do. One question then
is to know whether distance-dependent interactions between trees can
be degraded into distance-independent processes without loss of real-
ism (Deutschman [1996], Levin et al. [1997], Pacala and Deutschman
[1995]). This matter in fact goes well beyond the scope of forest mod-
els since it concerns the whole field of spatio-temporal dynamics (Bas-
compte and Solé [1995], Czárán and Bartha [1992]).

Consider on one hand the spatial pattern formed by trees (Moeur
[1993]), and on the other hand a variable of interest that results
from growth processes, for instance wood volume. For a distance-
independent model, there is no connection between the two. In a
distance-dependent model on the contrary, there is reciprocal action
of one on the other. For a stand manager, the question of interest
would be: how does the coupling between spatial pattern and growth
processes modify wood volume prediction? In this paper, however, we
address the counterpart question: how does this coupling affect spatial
pattern? More specifically, we are concerned with the incidence of
competition on spatial pattern (Brisson and Reynolds [1997], Hanus et
al. [1998], Pielou [1962]).

In the era of modern computing, it is possible to track numerically
complicated models with several interacting processes (Levin et al.
[1997]). However to have access to analysis and understanding, we
have favored simplicity. Hence we restrict to one aspect of the previous
question, that is: how does asymmetric competition for light affect the
spatial pattern of trees?

Our contribution to this question relies on a simple model, that will
be described in the first section. Trees are considered as cylindrical
boles topped by a flat disk of foliage. The competition pressure exerted
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on a subject tree is a function of disk overlaps with higher trees. The
growth model is calibrated on 12 stands of natural rain forest in French
Guiana. Independently of growth data, these stands exhibit regularity
between trees on short distances (< 10 m) and clustering on medium
distances (∼ 30 m). Our results and discussion then concentrate on
the following validation of our approach: whether the spatial patterns
simulated by the model correspond to the ones observed on the field or
not.

2. Methods.

2.1 Site description. The data of this study come from Para-
cou site, located 40 km west from Kourou, French Guiana (5◦ 15’N,
52◦ 55’W). The climate is equatorial with two seasons, an average an-
nual rainfall of 3160 mm, and a dry season that lasts three months.
The relief consists of small hills (less than 50 m high) separated by wet
areas, with medium slopes (30% maximum).

On this site 12 plots of natural rain forests were set in 1984 by
the CIRAD-Forêt. Each plot is a 6.25 ha square with a buffer zone
50 m wide. From 1986 to 1988, the plots underwent three silvicultural
treatments: three plots were logged for hardwood, three plots were
logged for hardwood plus selective clearing, three plots were logged for
both hardwood and fuelwood plus selective clearing, and the last three
plots were left untouched as controls. On each plot, the circumference of
every tree with a DBH (diameter at breast height) ≥ 10 cm is measured
with a precision of 0.5 cm. Its spatial coordinates (± 50 cm) and its
species are noted too. Measurements have been carried annually from
1984 to 1995, and once every two years since. Height measurements
on a sample of trees have been achieved in 1997 too. Other stand
characteristics such as contour lines have also been collected. All
data are gathered into a data base coupled to a GIS. A more precise
description of Paracou trials is given by Favrichon [1998].

2.2 Model construction. Model equations are derived from
forska-type gap models (Leemans [1991], Prentice and Leemans
[1990], Prentice et al. [1993], Desanker and Prentice [1994], Lindner
et al. [1997]). Gap models (see Shugart [1984], Shugart et al. 1992] for
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a review) were initially designed to model forest succession over long
time laps. They have also been applied to forest management issues
(Shugart et al. [1980], Waldrop et al. [1986], Mohren et al. [1991]). A
recent development of the gap model forska (Lindner et al. [1997])
is even concerned with modeling tree growth in pure even-aged beech
stands. As gap models are applied to more precise issues, their valida-
tion is made more acute: while former gap models are tested for their
ability to reproduce specific composition (Botkin et al. [1972], Shugart
and West [1977]), the latest are tested for their ability to reproduce
diameter distribution of every species within the stand (Waldrop et al.
[1986], Prentice and Leemans [1990], Prentice et al. [1993]).

As gap models simulate the trajectory of every single tree, they are
individual-based models. However tree interactions are not modeled
with reference to a spatially explicit tree neighborhood; stand char-
acteristics such as vertical light distribution, stand density, etc., are
considered homogeneous over a plot whose size corresponds to the size
of the crown of a dominant tree (Prentice and Leemans [1990]). Then
every tree interacts with that homogeneous (at the plot level) field, so
that it is not possible, for instance, to identify the trees that compete
with a designed tree. Hence, gap models rely on a stand description at
the tree level and a description of interactions at the plot level.

In our study we aim to see how tree competition can induce spatial
pattern. So we need a description of interactions at the tree level,
such as in the model sortie (Pacala et al. [1993], [1996]). A tree is
described by its diameter, its height, and its spatial coordinates on
the plane. Interactions between trees are summed up by an additional
tree variable, the normalized leaf area index. As in gap models, forest
dynamics is split into three components that are growth, mortality, and
recruitment. We actually focus on growth. Mortality and recruitment
are reduced to the simplest expression.

Although the study site comprises more than 200 species, species
diversity was not considered (see discussion for a justification of this
choice).

2.2.1 Growth submodel. For a tree labeled i, let Di be its diameter,
Hi its total height, and qi ∈ R2 its spatial coordinates on the ground.
When no confusion is possible, we shall omit the label i. The starting
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point is the growth equation of forska (Prentice and Leemans [1990],
Leemans [1991]):

(1)
d

dt
(D2H) = red×

∫ H

B

s(z) (gP (q, z) − r z) dz

where red is a reduction factor that describes competition for soil
resources, s is the vertical leaf distribution within the tree from its
lowest branch at height B to its total height H, P (z) is a factor that
depends on the available light at the point of coordinates z ∈ R3 in
space, and g and r are parameters. As we are only interested with
competition for light, we set red = 1.

The vertical leaf distribution is expressed as

(2) s(z) = Laσ(z)

where La is the total leaf area and σ is a distribution on [B,H] that
describes the shape of the crown. Usually the distributions found are
the uniform distribution σ(z) = (H −B)−1 as in forska, or the Dirac
distribution σ(z) = δ(z = H) as in jabowa-foret like gap-models
(Botkin et al. [1972], Shugart and West [1977]). One question is to
choose the precise form of σ. However the calculuses that follow (up to
equation (11)) aim at showing that, with a few assumptions, equations
are in fact independent of σ.

According to the pipe theory (Mäkelä [1977]), the total leaf area La
is proportional to the cross-sectional area of sapwood S:

(3) La = cS

Then assuming that S is proportional to Db, a coefficient C exists such
that

(4) La = CDb

Equation (4) has been used in various models, including gap models,
with b ranging from 1.93 (Kohyama [1989]) to 2.9 (Shugart and West
[1977]). Values close to 2 are mostly found (Kohyama [1989]). Hence, as
in the gap models jabowa (Botkin et al. [1972]) and forska (Prentice
and Leemans [1990]), we have assumed b = 2. Equation (4) can be



152 N. PICARD, A. BAR-HEN AND A. FRANC

derived from other considerations: let R be crown radius; a fractal
dimension a of crown can be defined so that La is proportional to Ra

(Mäkelä [1997], Zeide and Pfeifer [1991]). Then, assuming that crown
radius is linked to diameter by a simple proportionality coefficient
(Bossel and Krieger [1991]),

(5) R = ρD

we obtain equation (4) with b = a. Values of a found in the literature
(Mäkelä [1997], Zeide and Pfeifer [1991]) range from 2.13 to 2.76.

The term −r z in equation (1) represents the loss due to respiration
and, more generally, wood maintenance. Let H be the mean height:
H =

∫
zσ(z) dz (for the Dirac distribution, H = H). Then using

equations (2) and (3), total loss
∫
s(z)rz dz can be rewritten as rcSH.

Assuming that there is a form factor η such that H/H = η, total
loss appears to be proportional to HS, which is a rough estimate of
the volume of sapwood. So the term −rz in equation (1) expresses a
proportional relationship between maintenance losses and the volume
of sapwood. Using equation (4), total loss can finally be rewritten as
θHDb, where θ is a proportionality coefficient (this expression will be
used later in equation (14)).

The term Q =
∫
s(z) gP (q, z) dz in equation (1) represents volume

gain due to photosynthesis: g is the potential gain when light intensity
is not limiting, whereas P is a reduction factor that integrates compe-
tition for light. In forska, P (q, z) is calculated as ϕ(I(q, z)), where
I(z) is light intensity at the point of coordinates z in space, and ϕ(I)
is the photosynthesis response curve of a leaf. The function ϕ has a
hyperbolic form. This dependence is observed for a leaf over a few min-
utes, but when scaling up to a crown during a year, the dependence
between average photosynthesis rate and average light intensity tends
to be more linear (McCrady and Jokela [1998], Ruimy et al. [1995]).
Suppose then that P (z) is proportional to I(z). Light intensity is expo-
nentially decreasing according to a Beer-Lambert law with absorption
coefficient k, so that

(6) P (x, z) =
I(x, z)
I0

= exp[−kLAI (x, z)]

where I0 is light intensity above the canopy and LAI(x, z) is the leaf
area index at height z above the point of coordinates x ∈ R2 on the
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ground. The leaf area index can be interpreted as the number of the
leaf layer that stands above height z. Its calculation, for a tree labeled
i, supposes that its competing neighborhood is known:

(7) LAIi(z) ≡ LAI(qi, z) =
1

πR2
i

∫ +∞

z

{
si(h) +

∑
j �=i

ljisj(h)
}
dh

where lij ≥ 0 are weights that define the competing neighborhood:
lji > 0 if the tree labeled j casts a shadow on the tree labeled i.
Competition for light is asymmetric, meaning lij > 0 ⇒ lji = 0. The
first term in integral (7) represents self-shading and is noted LAIselfi ,
whereas the second term represents competition and is noted LAIcomp

i .
Suppose that tree crowns do not penetrate each other and that light
beams are vertically directed, so that lji > 0 ⇒ Bj > Hi. Then for
any z ∈ [Bi, Hi],

(8)

LAIcomp
i (z) =

1
πR2

i

∫ +∞

z

∑
j �=i

ljisj(h) dh

=
∑
j �=i

lji

(
Rj

Ri

)2

LAIselfj (Bj)

(9) LAIselfi (z) =
1

πR2
i

∫ +∞

z

si(h) dh

Thus LAIcomp
i is independent of z, z ∈ [Bi, Hi]. Using equations (2),

(4) and (5) and the fact that
∫
[B,+∞[

σ(z) dz = 1, LAIself(B) appears
to be a constant C/πρ2 that we call LAImax. Then using equations
(2), (4), (6), (8) and (9), the volume gain Q =

∫
s(z) gP (q, z) dz can

be rewritten as

(10) Q = gCD2 exp[−k LAIcomp] ×Qself

where

Qself =
∫ H

B

σ(z) exp
[
− k LAImax

∫ H

z

σ(h) dh
]
dz.
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For the Dirac distribution, Qself = exp[−kLAImax]. For any density
function, we can make the transformation from z to u =

∫ H

z
σ(h) dh,

which yields

(11) Qself = −
∫ 0

1

exp[−k LAImaxu] du =
1 − exp[−k LAImax]

k LAImax

Equations (10) and (11) show that the dependence of Q on D and
LAIcomp is independent of the choice of σ. Hence we shall not have to
specify a particular form to σ.

In our model, the competitive pressure exerted by a tree labeled j on
a tree labeled i is supposed to be proportional to

(12) lji =
ν(‖qi − qj‖, Ri, Rj)

πR2
j

I (Hj > Hi)

where I(p) is the indicator function of proposition p, (I(p) = 1 if
p is true, = 0, otherwise) and ν(d, u, v) stands for the area of the
intersection of two disks of radius u and v a distance d apart. It can
be checked that (lji) has the asymmetric property. Following equation
(10), we also re-express the volume gain Qi of tree i as Qi = γD2

i P (Li),
where

(13) Li =
LAIcomp

i

LAImax
=

∑
j �=i

lji

(
Rj

Ri

)2

and P is a decreasing function such that P (0) = 1 and P (+∞) = 0.
The precise form of P will be exposed later.

We call L the normalized leaf area index. It can be interpreted as the
number of trees that cast a shadow over the subject tree. This variable
can also be considered as a distance-dependent competition index
(see Biging and Dobbertin [1992], [1995]) for a review on competition
indices, that would be classified as an influence-zone overlap index. The
major difference with indices such as Gerrard’s competition quotient or
Bella’s competitive influence zone overlap results from the asymmetric
term I(Hj > Hi).

Equation (1) predicts volume increment. To separate diameter and
height increments, we need a further relation. In forska, this is
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done by assuming a relationship between height and diameter. We
have preferred to model volume increment and diameter increment
separately. Given our assumptions, equation (1) can be rewritten as

(14)
d

dt
(D2H) = D2 (γP (L) − θH).

Differential equations are transposed into increment equations with a
time step of one year. Then, knowing annual diameter increment ∆D,
annual height increment ∆H can be derived as follows:

(15) ∆H = γ P (L) −
(
θ + 2

∆D

D

)
H

Diameter increment is predicted empirically from D and L. Data show
that, knowing D and L, the conditional distribution of diameter incre-
ment is well adjusted by a modified Weibull law with two parameters
defined as follows: a random variable X follows the modified Weibull
law with parameters (α, β) if Xβ follows an exponential law with pa-
rameter α. Diameter increment is then predicted by

(16) ∆D = E(X) =
Γ(1 + 1/β)

α1/β

where α and β linearly depend on L and D, respectively, and Γ is for
the gamma function.

Function P in equations (14) and (15) is also adjusted to data.
First, we define the potential diameter increment ∆Dpot at level τ
as the (1 − τ )% quantile of the conditional distribution of diameter
increment knowing D and L. For our modified Weibull distribution
with parameters (α, β), it gives

(17) ∆Dpot =
(

ln(1/τ )
α

)1/β

.

Potential diameter increment can be interpreted as the increment
obtained when all photosynthetic gains are invested into diameter
growth. Setting ∆H = 0 in equation (15) yields

(18) γ P (L) −
(
θ + 2

∆Dpot

D

)
H = 0.
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Eliminating ∆Dpot from equations (17) and (18), and considering small
trees for which D → 0, H → 0, H/D → κ, we obtain

P (L) =
2κ
γ

(
ln(1/τ )

α

)1/β0

where β0 is the value of β when D = 0. Remembering that P (0) = 1,
the final expression for P is:

(19) P (L) =
(
α0

α

)1/β0

where α0 is the value of α when L = 0. As α is a linear function
of L (see equation (21) below) the decrease of P with L is slower
than an exponential decrease (as given by equation (6)). Although
the exponential model, which finds its foundation in the analogy with
the Beer-Lambert law, has been widely used in gap and process-based
models (Bossel and Krieger [1991], Mäkelä [1997]), studies suggest that
light extinction in canopies would be slower indeed (Chen et al. [1993]).

2.2.2 Mortality submodel. Let f(D, t) be the diameter distribution at
time t. Supposing that diameter growth G and mortality m depend on
diameter and time only, and neglecting diffusion due to the variability
in diameter increments, it can be shown (Kohyama [1989]) that

∂f

∂t
= −∂(Gf)

∂D
−mf.

In the stationary state, ∂f/∂t = 0, mortality can thus be estimated as

(20) m(D) = − 1
f(D)

d(Gf)
dD

In the stationary state, diameters are distributed according to an
exponential law. The mean diameter growth G is estimated from
equation (16) by empirically relating L to D. Mortality is modeled
as a stochastic process: at each time step and for every tree, a random
number between 0 and 1 is drawn. When it is less than m(D), the tree
dies.
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2.2.3 Recruitment submodel. The number of trees is kept constant by
making equal the number of dead with the number of recruited trees
every year. Saplings are located at random on the plot. Their initial
diameter is D0 and their initial height H0.

2.3 Parameter estimation. To estimate the dependence of α and
β on L and D, a data set with the following variables was extracted
from Paracou trials: DBH in 1988 (D88), annual diameter increment
between 1988 and 1991 (∆D88), and spatial coordinates. As diameter
increment is small on average compared to the precision of diameter
measurements, it was smoothed over three consecutive years. More
precisely, ∆D88 is the slope of the linear regression of Di over i, (i =
1988 to 1991). We used the period 1988 91 that follows the silvicultural
treatments to get the greatest variability in ∆D88. In evaluating ∆D88,
palm trees, trees with an irregular circular shape, and trees that are not
present over the whole period 1988 91 are disregarded. The normalized
leaf area index is calculated from diameter and spatial coordinates
(equations (12) and (13)), assuming that the relation of order on heights
is the same as the relation of order on diameters (this hypothesis is
not too strong: on a subsample of 591 trees whose height has been
measured, the normalized LAI has been calculated from equation (12)
with or without replacement of I(Hj > Hi) by I(Dj > Di); Pearson’s
correlation coefficient between both values exceeds 0.95). To handle
side effects, trees which are less than 10 m away from a border are also
disregarded. The data set finally contains 23843 trees. After numerous
experimentation, the selected model is:

α = α0 + α1 L(21)
β = β0 + β1 D(22)

Parameters are estimated by minimizing the sum of the squared differ-
ences between ∆D88 and diameter increment as predicted by equation
(16).

An empirical relationship between mean L and diameter is derived
from the same data set, but with restriction to control plots (7892
trees). An exponential function fits the data:

(23) L = L0 exp
[
− D

Dc

]
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FIGURE 1. Annual probability of death as a function of diameter.

Parameters are estimated by minimizing the sum of squared differences
between observed normalized LAI and their value as predicted by
equation (23).

To characterize diameter distribution in the stationary state, we used
DBH measurements in 1984, that is to say before any silvicultural
treatment. This data set comprises 46476 trees. Diameter distribution
is an exponential law with parameter λ. Then mortality can be
calculated from equation (20), where

(24)
f(D) = λ exp(−λD)

G(D) =
Γ(1 + 1/β)

(α0 + α1 L)1/β

and β and L are given by equations (22) and (23), respectively. The
calculus of m is done numerically (see Figure 1).

The crown radius / diameter ratio ρ is predicted from measurements
made in 1990 of 182 individuals in one of the plot that underwent the
first treatment. Crown areas S were estimated from aerial photographs,
and ρ is estimated by linear regression between

√
S/π and D.

Estimation of γ and θ relies on the measurements of DBH and
height for 591 individuals in a control plot, in 1997. Tree heights
were measured with a Bitterlich relascope. We proceeded as follows:
suppose γ and θ are known; replacing L with L in equation (16) yields
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a differential equation on D. Also replacing L with L in equation (15)
yields a differential equation on H. These two equations can be solved
numerically. A height versus diameter function H = φ(D) is thus
obtained, that can be compared with the measurements. Hence γ and
θ are estimated so as to minimize the sum of squared difference between
measured heights, and heights predicted by φ (see Figure 2).

To initialize saplings, we take D0 = 1 cm and H0 = φ(D0) = 2.8 m.
This is less than the minimum diameter for census at Paracou site
(Dmin = 10 cm), which supposes that the equations adjusted for
D ≥ Dmin can be extrapolated to D ≤ Dmin. This is done so that the
random positioning of saplings does not affect too heavily the spatial
pattern of trees of DBH ≥ 10 cm during the growth from 1 to 10 cm,
competition has time to express. The total number of trees on the
plot has to be increased accordingly. A density of 3840 trees of DBH
≥ 10 cm on a plot together with an exponential diameter distribution
(equation (24)) yields a total number of 9445 trees of DBH ≥ 1 cm on a
plot. This number can be compared with a sapling density, as estimated
in 1986 on all plots with a sampling rate of 2.3%. The measured density
of saplings (H > 1.50 m and D < 10 cm) is 4059 on a plot, which yields
a total density of about 7900 trees more than 1.50 m high on a plot.
Thus 9445 trees of DBH ≥ 1 cm on a plot may be an over-estimation.

2.4 Model runs. Model equations are summed up in Table 1.
They describe forest dynamics in the stationary state. Mortality causes
the diameter distribution to become exponential when sufficient time
elapses from the initial distribution. To minimize the effects of the
initial spatial pattern, the model has to be run for a long time. A
first initial state is obtained by locating trees at random, drawing
their diameter from an exponential law with parameter λ, and setting
H = φ(D). Then the model is run for 1000 years. We checked that this
duration was long enough to reach the stationary state, without any
relevance to the underlying biological system (the joint distribution of
diameters and heights on the stand reaches a stable density in less than
300 years). The final state that is obtained is used as the initial state
for further simulations.

Results are based on the repetition of 100 independent runs that last
500 years each.
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TABLE 1. Model equations.

Variables Equation
Recruitment submodel

q: spatial coordinates [m] q ∼ uniform law on the plot
Growth submodel

D: diameter [cm] ∆D = (Γ(1 + 1/β(D))/α(L)1/β(D))
H: height [m] ∆H = γP (L) − (θ + 2(∆D/D))H
L: normalized leaf Li = (1/(πR2

i ))
area index [-] ×∑

j �=i ν(‖qi − qj‖, Ri, Rj)I(Hj > Hi)
R: crown radius [m] R = ρD

Mortality submodel
m: probability of death [-] m = −(1/f(D))(d(Gf)/dD)

Functions Expression
α: scale parameter α(L) = α0 + α1L

β: shape parameter β(D) = β0 + β1D

P : light reducer P (L) = (α(0)/α(L))1/β(0)

f : diameter distribution f(D) = λ exp(−λD)
G: mean diameter growth G(D) = (Γ(1 + 1/β(D))/

α(L0 exp[−(D/Dc)])1/β(D))

2.5 Characterizing spatial patterns. A spatial pattern is consid-
ered as one realization of a homogeneous and isotropic point process
(see Cressie [1991] for a presentation of point process theory). Then
it can be characterized through Ripley’s K function (Penttinen et al.
[1992]). Roughly speaking, NK(r) is the mean number of further points
within a distance no more than r from a randomly chosen point. For
a homogeneous Poisson point process, K(r) = πr2. When the point
process generates regular (respectively, attractive) spatial patterns, the
K function is less (respectively, more) than πr2 for at least some r.

We use Ripley’s estimator of the K function. To assess departure
from randomness, we consider the position of the estimated K function
with respect to an envelope based on 100 realizations of a homogeneous
Poisson process with the same intensity.
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3. Results.

3.1 Parameter estimates. Table 2 contains a list of definitions
of all parameters and their estimates with 95% confidence limits. The
correlation coefficient between observed crown radius and the values
predicted by equation (5) is just correct (0.60). Yet data show that a
proportionality relationship between R and D is the most reasonable.
In particular an allometric function does not provide a better fit. Table
3 compares the value of ρ that we have found (0.09 m.cm−1) with some
published values. Our value falls within the range of those obtained in
other forest formations.

TABLE 2. Definitions and estimates of parameters. In linear regression, 95% con-

fidence intervals are obtained by assuming the normality of residuals; in nonlinear

regression, approximate 95% confidence intervals are obtained by linearizing the re-

gression function near the estimate; the 95% confidence interval of λ is obtained by

application of the central limit theorem. Numbers in parentheses indicate Pearson

correlation coefficient between observed and predicted variables.

Symbol Description Estimate

α0 Initial scale parameter of ∆D distribution 7.5± 13
[(cm.yr−1)−β ] (Eq. (21)) (0.24)

α1 Slope of scale parameter of ∆D distribution 3.5± 10
[(cm.yr−1)β ] (Eq. (21)) (id.)

β0 Initial shape parameter of ∆D distribution [-] 1.2± 1.2
(Eq. (22)) (id.)

β1 Slope of shape parameter of ∆D distribution (2.4± 2.0)× 10−2

[cm−1] (Eq. (22)) (id.)

L0 Mean normalized leaf area index of seedlings 1.65± 0.09
(D → 0) [-] (Eq. (23)) (0.34)

Dc Diameter at which the mean normalized leaf area 25.9± 2.2
index is divided by e [cm] (Eq. (23)) (id.)

λ Parameter of diameter distribution (exponential 0.085± 8× 10−4

law) [cm−1] (Eq. (24))

ρ Crown radius / diameter ratio [m.cm−1] (Eq. (2.5)) 0.09± 0.005
(0.60)

γ Potential volume gain per unit of basal area 1.36± 0.11
[m.yr−1] (Eq. (14)) (0.82)

θ Respiration and wood maintenance rate [yr−1] (2.6± 0.4)× 10−2

(Eq. (14)) (id.)
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To compare our values of γ and θ with those found in the literature, γ
and θ first have to be related to the parameters that are more commonly
used in gap models. Following the calculus of Prentice and Leemans
[1990], we consider the case of optimal growth (L = 0) in equation (14):

2DH
dD

dt
+ D2 dH

dt
= D2γP (0)

For a sapling (H → 0, D → 0, H/D ≈ κ, where κ is the initial slope of
height versus diameter), it becomes:

2κ
dD

dt
+
dH

dt
= γ

since P (0) = 1. Considering that dH/dD ≈ H/D ≈ κ, we finally
obtain:

(25) γ = 3κ∆Dmax = 3∆Hmax

where ∆Dmax and ∆Hmax are maximum annual increment in diameter
and height of small trees.

Comparing equation (14) with equation (1) (using equation (4)) yields
θ ≈ Cr. Table 3 sums up a few values of γ and θ that can be derived
from the literature on gap models. Compilation of sylvics (Prentice
and Helmisaari [1991]) and process-based models (Bossel and Krieger
[1991], Mäkelä [1997]) provide other values. Our estimates of γ and θ
are within the scope of usual values.

3.2 Control run. Model checking is based on height versus diameter
plots. Figure 2 compares measurements with model. Although the
general trend is well reproduced, it appears that height variability
is less in simulations than in reality. Figure 3 shows height and
diameter distributions. There is good agreement between simulated
and measured diameter distribution. As for height, the mode of the
distribution is slightly higher in simulations than in reality.

Figure 4 shows the distribution of the normalized LAI as estimated
from field measurements and from simulations. Its multimodal distri-
bution with peaks on integer values is characteristic of the Boolean
model defined as follows: germs follow a homogeneous Poisson process,
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FIGURE 2. Height versus diameter: points represent field data (591 trees); the
line is the best fit H = φ(D) when varying θ and γ; the shaded area represents
the envelope of a simulated plot (4392 trees).

and the prototype grain is a disk whose radius follows an exponential
law. The agreement between simulations and reality is quite good. It
may be noticed that the highest values of normalized LAI are closed to
3. This remark may be linked to conclusions of botanists who worked in
French Guiana (Birnbaum [1997], Lescure [1978], Oldeman [1974]), and
who observed that mature forest was vertically structured into three
main canopy layers.

Finally, the density of trees larger than 10 cm in DBH is 4394±88 on a
simulated plot. That is 13% more than the mean density on real plots.
As diameter distribution is well simulated for D > 10 cm (Figure 3),
it implies that simulations grow too few trees of DBH less than 10 cm,
and/or the total number of trees larger than 1 cm is over-estimated.
This had already been noticed in Section 2.3.

3.3 Spatial patterns. Figure 5 shows Ripley’s K function for
stand number 1 of Paracou trials, together with the envelopes of 100
simulations of a homogeneous Poisson process with the same intensity,
and the envelopes of 100 model runs. Consider first the right plot where
the pattern is made from all trees of DBH ≥ 10 cm (that is to say, all the
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FIGURE 3. Height (left plot) and diameter (right plot) distributions, as sim-
ulated by the model (plain lines) compared to field measurements (barplots).
Height distribution is obtained from a sample of 591 trees. Diameter distribu-
tion is estimated from a sample of 46476 trees.
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FIGURE 4. Normalized LAI distribution, as simulated by the model (plain
line) compared to field measurements (barplot). Normalized LAI distribution
is obtained from a sample of 591 trees.
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FIGURE 5. Ripley’s K function for stand number 1 of Paracou trials:
the stairsteps line represents the estimate for the stand, plain lines are the
envelopes of 100 simulations of a homogeneous Poisson process with the same
intensity as the stand, and the shaded area is the envelope of 100 repetitions

of the model. We have represented
√

K(r)/π − r rather than K(r), so

that positive, respectively negative, values indicate clustering, respectively
regularity. The left plot is limited to trees larger than 22 cm, whereas the
right plot takes into account all the trees on the stand. The underlying strip
indicates departure from randomness (black indicates regularity, grey indicates
clustering).

trees that have been measured). On distances less than 10 m, the curve
is under the envelope of Poisson processes, which indicates regularity.
On distances between 20 and 60 m, the curves are above the envelope,
which denotes clustering. To conserve space, the curves for the other
11 plots are not presented here. However, they all present significant
regularity on short distances (less than 10 m). Clustering is generally
present around 30 m, but its intensity varies from one plot to another.
On one plot (number 7) clustering does not appear before 50 m, and
on another (number 8) there is no clustering at all. For r > 50 m, there
is considerable variation in spatial pattern from one plot to another.

On the left plot, trees of DBH ≥ 22 cm are extracted and we consider
the spatial pattern they form. Repulsion is still present under 10 m but
clustering has disappeared.

Figure 5 also shows the position of Ripley’s K function on stand num-
ber 1 with respect to the envelopes of model runs. When considering
all trees (right plot), model runs exhibit repulsion on short distances.
But repulsion is still harder on stand number 1 than in simulations.
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FIGURE 6. Departure from randomness of the spatial pattern on stand
number 1 of Paracou trials (left plot) compared with simulations (right plot).
Consider the spatial pattern defined by all trees larger than a diameter
given on the vertical axis. Its Ripley’s K(r) function is summarized by the
corresponding horizontal strip, as in Figure 5: black indicates regularity, grey
indicates clustering. In the right plot (model runs), regularity or clustering is
indicated if at least 20 out of 100 simulations show it.

However, when considering bigger trees (DBH ≥ 22 cm, left plot), Rip-
ley’s K function of stand number 1 lies within the envelope of model
runs on distances less than 20 m. Hence the spatio-temporal process
defined by the model is compatible with regularity as observed on real
tree patterns for trees of DBH ≥ 22 cm. However it cannot account for
clustering on medium distances.

In the same way as the pattern of trees with DBH ≥ 10 or 22 cm has
been studied, we can consider the pattern of trees with DBH ≥ Dmin for
any Dmin. Figure 6 summarizes the results for Dmin ranging from 10 to
70 cm. Figure 5 represents qualitative rather than quantitative results,
since it assesses whether there is regularity, randomness or clustering
without comparing Ripley’s K function between simulated and real
patterns. It shows that the model is able to qualitatively reproduce
the regularity on real plots, even when scaling up from small to bigger
trees. But it does not account for clustering.

4. Discussion.

4.1 Modeling choices. The empirical modeling of diameter in-
crement is not successful: the Pearson correlation coefficient between
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observed and predicted increment is 0.24 (Table 2), which means that
less than 6% of the variability of ∆D is explained by the model. There
may be two reasons: (1) the model, as defined by equations (16), (21)
and (22), is not relevant; (2) DBH and the normalized leaf area index
are not the right explicative variables of diameter increment.

First, the fit of the conditional distribution of ∆D knowing D and
L to the modified Weibull distribution (equation (16)) is quite good,
and problems may not come from this choice. On the contrary, the
dependence of the parameters of the modified Weibull distribution on
D and L is not well summarized by equations (21) and (22). Better
relationships could be proposed, in particular if α is made dependent
on D, but they introduce new parameters for a small increase in
the percentage of explained variability. In the same way, we could
describe the conditional distribution of ∆D by a Burr distribution,
which generalizes the Weibull distribution (Lindsay et al. [1996]), but
that would increase the number of parameters too.

To assess the relevance of the model (defined by (16), (21), (22)), we
have compared its predictions with those of an additive model with loess
smoother. Estimates are obtained through a backfitting algorithm.
The additive model yields a Pearson correlation coefficient between
predicted and observed values hardly better than the former (0.26 as
compared to 0.24).

Secondly, as the number of individuals and the variability in ∆D
are considerable, the DBH and the normalized leaf area index do
significantly contribute to explain ∆D. However these are not the
best explicative variables. We can compare with selva, a model of
forest dynamics built on the same study site of Paracou by Gourlet-
Fleury [1997]. In selva, 23% of ∆D variability is explained from three
explicative variables (and 7 parameters): DBH, the number N of trees
larger than the individual within 30 m from it, and the variation ∆N
of N . In fact diameter and normalized leaf area index may account for
local interactions only. So if the explanatory power of our model was to
be really estimated, we should be able to separate within the diameter
increment which part is due to local interactions and which part is due
to other factors.

However our goal is not to build a precise empirical model of diameter
growth, but to produce a realistic process of competition for light.
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We have preferred a simple and explanatory model to a precise one.
This is also the reason why species diversity has deliberately (and
quite surprisingly for gap models) been disregarded. Taking species
diversity into account could increase model precision: in selva, the
part of explained variability reaches 42% when distinguishing 15 groups
of species (65 parameters). There is a debate on whether the high
species richness in tropical rainforest corresponds to a high diversity
in ecological niches, or whether it can be reduced to a considerably
smaller number of functional groups (Denslow [1987], Hubbell and
Foster [1986]). Without taking part in it, we believe that the behavior
of the system has to be understood globally, even if crudely, before
dividing it into smaller part. Hence taking into account species diversity
will be handled in later work.

Although individual characteristics are badly predicted, stand char-
acteristics such as DBH, height or L distributions are correctly modeled
(see Figures 3 and 4).

In summary, our approach was to start with functional equations,
such as these of gap models, then to calibrate them on field data.
Eventually, the set of equations that are gathered in Table 1 define
a spatio-temporal process, which can be considered independently of
the underlying biological system. Then the question of interest is: can
this spatio-temporal process account for the spatial patterns of trees as
observed in the field?

4.2 Model behavior. The modeling of diameter increment was
based on data collected just after the silvicultural treatments in order
to get the maximum of contrast in L and ∆D. Mortality submodel
however supposes stationarity. Hence our model cannot account for
transient phases, such as evolution after clear-cutting.

As we aim at assessing the role of asymmetric competition on spatial
pattern, mortality and recruitment submodels have been designed so
as to be as neutral as possible to spatial pattern. Mortality depends on
diameter only. Saplings are located at random. So recruitment tends
to drive the spatial pattern towards randomness and cannot in any
case account for regularity. Imagine now that the growth submodel is
distance-independent: then the spatial pattern would remain random
(although this result can be obtained with a little thinking, it has been
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checked on simulations where distance-dependent equations (12) and
(13) have been replaced with distance-independent equation (23)). As
regularity is observed, it must come from the growth submodel which
is distance-dependent.

As diameter is exponentially distributed, small trees represent the
main part of the population. Then, when considering all trees on the
plot, their spatial pattern may mask the spatial pattern of bigger trees
who have experienced competition for a longer time. This may explain
in Figure 5 why repulsion on simulated stands is less marked when trees
of DBH ≥ 10 cm are taken into account (right plot), than when trees of
DBH ≥ 22 cm only are considered (left plot). As repulsion results from
the growth process, some time is necessary for competition to express
itself before repulsion becomes apparent.

It may seem paradoxical that the growth process, which acts on
localized trees, affects their spatial pattern. Of course, when growing,
trees do not move. “Movements” are generated by the deaths of
trees, immediately replaced with saplings. We can justify the observed
regularity by the following argument: a tree close to a big tree grows
more slowly than an isolated tree of the same size. Then it stays a
longer time in the same diameter class. As mortality rate is a function
of diameter only, to reach the same size an isolated and a competing
tree will undergo different cumulative survival probabilities. It implies
that to observe one tree of a given size near a big tree, we have to start
from a bigger contingent than to observe one tree of the same size in
an open spot. As the number of trees of a given size is constrained by
diameter distribution, the over-mortality of competing trees generates
regularity.

The previous argument stands if the stand is made of open and dense
spots, that is to say, if the environment is heterogeneous. Suppose
now that light conditions are the same everywhere: then, despite its
being distance-dependent, the growth submodel would behave like a
distance-independent process. So the pattern would be random. For
a random spatial pattern, the local density varies more intensively
than for a regular pattern. In other words, open and dense spots are
more contrasted in a random pattern than in a regular pattern. Then
randomness tends to favor regularity and vice versa, until a kind of
balance is reached.

What was not a priori obvious was whether, with the parameters
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FIGURE 7. Variation of the greatest distance of repulsion (rmax) with ρ.
Five values of ρ have been tested, namely 0.045, 0.09 which is the value of
ρin the model, 0.135, 0.18 and 0.27 m.cm−1. For each value, 20 (100 for
ρ = 0.09m.cm−1) simulation runs have been conducted. For each run, rmax is
estimated by comparing Ripley’s K function calculated on the pattern of trees
with DBH ≥ 10 cm with the envelopes of 100 simulations of a Poisson process.
One boxplot represents the distribution of the 20 (or 100) values of rmax for a
given value of ρ.

calibrated on field data, the balance would tip to detectable regularity
or not. Among the set of parameters (see Table 2) a few directly
influence competition: α1 (through equation (21)) and β0 (through
equation (19)) fix the strength of competition, whereas the crown radius
/ diameter ratio ρ quantifies the range of interactions between trees.
More precisely, ρ is the only parameter on which the value of the
normalized LAI depends (see Table 1). Thus we also tried to assess
the link between the greatest distance of repulsion, as it appears on
Figures 5 or 6 and the range of interactions between trees. Figure 7
shows that the distance of repulsion is increasing with ρ. Hence the
spatial pattern on short distances reflects the crown overlap.

Eventually, our model can be considered as a spatio-temporal process
that accounts for regularity but does not explain clustering on medium
distances. Point processes that reproduce the whole pattern of trees
have been proposed in the literature (Hanus et al. [1998], Moeur [1997]).
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Yet these point processes are built so as to obtain the required spatial
pattern, without any consideration to the biological processes that drive
the growth of trees. Our model on the contrary is based primarily on
the competition for light. As it does not account for the observed
clustering on medium distances, let’s now discuss other possible causes
of departure from randomness.

4.3 Possible causes of a nonrandom spatial pattern. We have
shown that introducing an asymmetric reducer can create realistic reg-
ularity. Other processes are likely to cause departure from randomness,
in particular: (1) competition for soil resources, (2) habitat heterogene-
ity, (3) seed dispersion.

First, competition for soil resources could easily be added to our
model by defining the factor red in equation (1). Analogously to gap
models, we could set

redi = 1 − 1
Vmax

∑
j �=i

cji D
2
j Hj

cji = I (‖qi − qj‖ < U)

where Vmax is the maximum volume bearable by the habitat and U
is the distance of influence of a tree when searching for water and
nutriments. This index is symmetric since cij > 0 ⇒ cji > 0. In the
model selva (Gourlet-Fleury [1997]), competition is globally described
through the number Ni of trees larger than individual i within 30 m
from it. We can write Ni =

∑
j �=i cji, where

cji = I (‖qi − qj‖ < 30) I (Dj > Di).

This index is asymmetric. The interesting point is that selva generates
clustering at 30 m. Hence the asymmetry of the competition index does
not necessarily imply regularity!

Secondly, spatial heterogeneity of the habitat may cause departure
from randomness, provided that the character that is varying deeply
affects the development of the plants. Then the spatial pattern of
plants would reflect the spatial pattern of the environmental character.
It could be incorporated into the model through a spatially explicit
reduction factor red = f(x).
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The two former points concern the growth submodel. Recruitment
submodel too is likely to act upon the spatial pattern. For instance,
a probability of seed dispersion that decreases with the distance from
the parent tree would yield clustering.

The final question is how these different processes interact. If each
process causes departure from randomness at a different scale, then it
should be possible to distinguish each effect. At Paracou, in particular,
it is likely that regularity on short distances comes from competition
for light, whereas clustering on medium distances comes from soil
heterogeneity or seed dispersion.
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