Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.)

Blanc Géraldine, Lardet Ludovic, Martin A., Jacob Jean-Louis, Carron Marc-Philippe. 2002. Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). Journal of Experimental Botany, 53 (373) : pp. 1453-1462.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (284kB)

Abstract : Somatic embryogenesis in Hevea is stimulated when the embryogenesis induction medium contains maltose, rather than glucose, fructose, or sucrose, in equimolarity (Blanc et al., 1999). Kinetic analyses were carried out on various physiological and biochemical indicators over the 8 weeks that the induction phase then expression of somatic embryogenesis can take. Embryogenesis induction in the presence of glucose, fructose or sucrose revealed strong callus growth in the first 3-4 weeks, associated with a high intra- and extracellular hexose content, a high starch content and a substantial decline in protein synthesis. In the presence of maltose, callus growth was slow and only half that seen with sucrose. This morphogenetic behaviour is associated with a drop in endogenous hexose and starch contents, and an increase in protein synthesis in the first three weeks of culture. The induction of embryogenesis in the presence of maltose was uniform and twice as fast as with sucrose supply. At the end of culture, peroxidase activity, antioxidant and membrane protein contents increased in these calluses; these characteristics may be associated with somatic embryo organization and with the maintenance of effective membrane integrity within a nutrient environment that has become limiting. These new results tally with data in the literature on the roles of sugars, and provide some precise information with regard to the 'carbohydrate deficit' hypothesis usually put forward to explain maltose action. An analysis of these results led to the hypothesis that regulation of endogenous hexose contents at a low level, through slow maltose hydrolysis, was a key element of the biochemical signal leading this callus towards somatic embryogenesis. (Résumé d'auteur)

Mots-clés Agrovoc : Hevea brasiliensis, Cal, Métabolisme des glucides, Anatomie végétale, Embryogénèse somatique, Régénération in vitro, Solution nutritive, Teneur en glucides, Maltose

Classification Agris : F02 - Plant propagation

Auteurs et affiliations

  • Blanc Géraldine
  • Lardet Ludovic, CIRAD-CP-HEVEA (FRA)
  • Martin A., CNRS (FRA)
  • Jacob Jean-Louis
  • Carron Marc-Philippe, CIRAD-CP-HEVEA (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-02-26 ]