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Abstract – Carbon allocation to the cambium along the stem is represented by a reaction-diffusion model along a continuous sink. Verti-
cal variations of stem area increment along the stem are then theoretically connected to partitioning coefficients between tree compart-
ments, at different spatial scales. This model is very sensitive to environmental growth conditions, and demonstrates the importance of
topology and geometry in models of secondary tree growth. An analytical resolution is proposed to describe the vertical profile of stem
area increment between crown basis and soil level. An empirical parametric equation is derived from this theoretical model. The 3 para-
meters of this equation are related to the internal and environmental conditions of the tree. These parameters can be used as indicators in
order to study the variability of stem taper. This equation is separately fitted on data from two experiments, with different silviculture and
site quality, for Picea abies of different ages. Variation in the parameters is discussed according to growth conditions. This equation is
further integrated in order to predict stem volume increment. Finally, some simple characteristic heights are derived from this function as
indicators of functional crown basis. These heights are systematically calculated to predict crown recession. They are finally compared
to heights measured during field work.
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Résumé – Une fonction d’accroissement ligneux le long de la tige, déduite d’un modèle à base physiologique d’allocation du
carbone. La distribution du carbone le long du tronc est décrite par un modèle de réaction-diffusion le long d’un puits continu de
carbone : le cambium. L’accroissement ligneux le long de la tige se déduit donc d’un modèle d’allocation de carbone dans l’arbre, à une
échelle fine. Ce modèle permet de prendre en compte l’effet des variations environnementales sur les profils de tige. Il montre le lien
étroit entre topologie et physiologie pour la croissance secondaire. Une solution analytique de ce modèle permet de décrire l’accroisse-
ment ligneux en dessous de la base de houppier. À partir de ce modèle théorique, nous proposons une fonction empirique pour décrire
l’accroissement ligneux tout le long de la tige. Cette fonction comporte 3 paramètres dont les variations peuvent être reliées aux condi-
tions environnementales. Cette fonction est ajustée à des données d’analyses de tiges d’épicéas avec des âges, des sylvicultures et des
fertilités différents. Les paramètres sont discutés selon les conditions de croissance. Une intégration de cette fonction permet un calcul
analytique de la production en volume. Enfin la fonction est dérivée pour obtenir des hauteurs caractéristiques, indicatrices de la base du
houppier fonctionnel. Ces hauteurs sont calculées pour décrire rétrospectivement les remontées du houppier et sont comparées aux
mesures externes de houppier, l’année d’abattage.
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1. INTRODUCTION

Traditional stem taper equations focus on the cumu-
lated output of tree growth. However the geometrical dis-
tribution of the radial increments is of prime importance
for timber quality: according to species, wood properties
can indeed be predicted from ring age and/or ring width
[17]. On the other hand, stem analysis techniques are of-
ten used by forest biometricians in order to calibrate
growth and yield models: these techniques result in sets
of geometrical stem data (i.e., heights and radii). Some
growth models have explicitly focused on such a geomet-
rical description [26, 40]. In our laboratory, such a model
was built for Norway spruce [17].

Deleuze and Houllier [6] presented a process-based
version of this model. As an output they obtained the
simulated inner ring structure of the stem. This model
was based on the carbon balance of the tree, and wood
increment was distributed along the stem by an
allometrical relationship between stem area increment at
any point along the stem and foliage biomass above this
point (the so-called Pressler rule (1865) in [1]): “The area
increment on any part of the stem is proportional to the
foliage capacity in the upper part of the tree, and there-
fore is nearly equal in all parts of the stem, which are free
from branches”.

In fact, the empirical Pressler rule is not valid when
environmental conditions vary [9, 21, 32]: (i) open-
grown trees and dominant trees growing in good condi-
tions have a steeper taper and a bigger buttress; (ii) sup-
pressed trees have a thinner or no increment at the base of
the stem [20, 27]; (iii) Pressler rule never describes the
buttress [31]. Stem profile is indeed affected by total car-
bon production, therefore by social position of the tree. It
is also affected by fertilization [10, 18, 37].

Pressler rule exactly corresponds to the hypothesis of
a uniform carbon allocation along the stem. Divergence
from this rule may be seen as a vertical variation of parti-
tioning coefficients related to environmental changes.
These empirical observations clearly indicate that
Pressler rule is too rigid and that we need more flexible
models, which can be linked with environmental parame-
ters.

The aim of this paper is to propose new flexible equa-
tions of stem area increment along the stem. These equa-
tions are heuristically derived from a process-based
model, in which the portion of the stem located between
foliage and soil level is considered as a continuous car-
bon sink. According to this description, the vertical parti-
tioning of carbon is represented by a one-dimensional

reaction-diffusion model, where the diffusion term
stands for carbohydrate translocation along the stem [7],
while the reaction term stands for the utilization of carbo-
hydrates by the cambium for its growth. Reaction-diffu-
sion models have already been used in mathematical
ecology [12, 28, 30] and in forest modeling [3, 13–15].
These models focus on population dynamics, while ours
focuses on carbon dynamics and fixation along the stem.

This process-based model yields a system of partial
derivatives equations. In this paper, we analytically solve
this differential system under simple assumptions, and
we derive explicit solutions which generate a simple and
flexible function that describes the vertical profile of an-
nual stem area increment along the stem. This equation
has only three parameters and can be interpreted accord-
ing to tree physiological status.

Picea abiesstem analysis data are used to fit this
model, and the value of model parameters is discussed
according to the prevailing site and silvicultural condi-
tions. This function is further used to estimate stem vol-
ume increment. Three characteristic heights are also
derived from this function. They drive us to a better defi-
nition of the functional crown. These theoretical heights
are compared to observed values: height to the first living
branch, height to the first living whorl, and height to the
first contacts with neighbor crowns.

2. DATA

2.1. Moncel-sur-Seille site

In 1991, 53-year-old trees were felled and measured
in 4 pure even-aged stands ofPicea abieslocated on a flat
area at Moncel-sur-Seille, near Nancy (northeastern
France). These stands corresponded to 2 site quality lev-
els by 2 thinning intensities: (“s1”) high productivity and
high thinning intensity, (“s2”) high productivity and low
thinning intensity, (“s3”) low productivity and high thin-
ning intensity, (“s4”) low productivity and low thinning
intensity. In each stand, 6 trees were selected: 2 domi-
nant, 2 codominant and 2 suppressed [16].

2.2. Amance site

The second site was located at Amance, near Nancy.
The pure even-aged experimental stand (“s5”) ofPicea
abies(L.) Karst. was planted in 1970 on a flat area with a
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relatively good site index [4]. Two provenances were
mixed (Istebna, Poland, and Morzine, Northern Alps,
France) along a 50 m East-West gradient. Stand density
varied continuously along a linear 75 m North-South gra-
dient from open growth to 10 000 stems/ha. The trial had
been slightly thinned in 1983 [8]. In January 1993,
4 dominant trees were selected at random in the 100%
Istebna part of the plot at different densities: tree “a1”
was an open-grown tree, while tree “a2” and tree “a117”
were located in medium-density part of the stand
(1 000–4 000 stems/ha) and tree “a134” was situated in
the densest part of the stand [5].

2.3. Measurements

For each tree, we measured: the total height (H), the
diameter at breast height (DBH), the height to the lowest
living branch (Hfb), the height to the lowest living whorl
(with at least three quarters of living branches:Hfw), and
the height of the first whorl free of any contact with
neighbor trees (Hfc). One of the objectives of the paper
was to get a better understanding of the functional mean-
ing of these alternative definitions of crown basis.

From the scars located at the top of each stem growth
unit [2], height growth was described throughout the life
of the tree. Disks were then cut from each tree in order to
obtain a description of annual increment along the stem:
11 or 12 disks for trees from Moncel-sur-Seille and one
disk per growth unit for trees from Amance.

3. THE REACTION-DIFFUSION MODEL

3.1. Structure of the model

The model was initially built for conifers, and was de-
rived by Deleuze and Houllier [7] from the continuous
formulation of carbon transport resistance in Thornley’s
model [38, 39]. In fact, it combines two processes that
take place along the stem: a carbon diffusion process, and
a carbon consumption process, i.e., secondary growth is
viewed as acontinuous sink. In its original version, the
model is restricted to the portion of the stem located be-
tween crown basis and roots.

The height to the base of the functional part of the
crown is notedHc: according to the definition of the
“functional crown”,Hc may thus beH, Hfb, Hfw orHfc. We
consider the portion of the stem situated belowHc, and

note x the vertical abscissa along the stem measured
downwards from crown basis:x = 0 at crown basis, and
x = Hc at soil level.

At time t, stem radius and stem section are respec-
tively notedR(x,t)andG(x,t) = πR2(x,t), while P(x,t) is
the concentration of photosynthates in the phloem. Over
a time step∆t (say, 1 year), stem radial and stem section
increment are respectively defined as:
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whereS, r, a andρ are parameters (seetable I). S is the
cross sectional area of the phloem (m2), a is the stem
growth rate or carbon consumption rate (m yr–1), andρ is
the dry weight of carbon per unit fresh wood volume
(kg C yr–1). This system is completed by limit conditions
(see below).

3.2. Analytical resolution of the model

First, we look for simple analytical solutions of equa-
tion (2).R is the stem radius, so that this variable cannot
be stationary. However, we can look for solutions that are
stationary forP, i.e. P(x,t) = P(x). For such solutions,
∂
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( )= andR(x,t) = α(x)t + β(x), whereα(x) and

β(x) are constant and only depend onx. System (2) then
becomes:
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This equation does not depend ont, so thatα(x) = 0,
∂

∂
R x t

t

( , )
= 0 andP(x,t) = 0: stationary solutions forP are

thus trivial forR.

Therefore, there is no general stationary solution that
is non trivial for system (2). However, we can look for
analytical solutions under the following approximation:
if radial increment is assumed to be very small during the
course, we can neglect the evolution ofR: R(x,t) ≈ R(x).
In that case, the resolution of equation (1) depends on the
profile of R(x). In this paper, we consider two simple
cases for the initial stem profile: a cylinder or a cone.

3.2.1. Approximate steady-state solutions
for an initial cylindrical stem

Under this initial condition and assuming that radial
increment can be neglected:R(x,0) = R0. Looking for

simple stationary solutions forP (see Appendix 1 for a
non-steady state solution), we get an ordinary second or-
der differential equation inP:
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wherea' = 2πa R0/S. General solutions of this equation
are linear combinations of exponential functions [11]:

P(x,t) = P(x) = Aexp(–zx) + Bexp(zx), (5)

wherez a r= ′ .

The final solution depends on conditions at limits (i.e.,
foliage and roots).

In this case, the instantaneous radial increment, which
is proportional to photosynthates concentration, does not

depend ont, but only onx:
∂

∂ ρ
R x t

t
a
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= . It is therefore
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Table I. Parameters and variables in the reaction-diffusion model.

Name Meaning Unit

x Downward distance from crown basis m

t Time year (yr)

P(x,t) Photosynthates concentration in the phloem kg C m–3

R(x,t) Stem radius m

r Resistance along the phloem yr m–2

S Phloem cross sectional area m2

a Stem growth rate m yr–1

Dry weight of carbon per unit of fresh wood volume kg C m–3

∆Cr Carbon allocation to the roots kg C yr–1

∆Cs Carbon allocation to the stem kg C yr–1

R0 Initial stem radius for a cylinder m

Slope of the conical shape of the stem unitless

Hc Stem length (between “crown basis” and soil level or between tree tip and soil level) m

Pf Carbon foliage concentration kg C m–3

Pr Carbon roots concentration kg C m–3

Ff Carbon flow from foliage kg C m–3 yr

Fr Carbon flow to the roots kg C m–3 yr

∆G(x,t) Annual stem area increment m2 yr–1

Hfb Height to the lowest living branch m

Hfw Height to the lowest living whorl m

Hfc Height of the first whorl free of any contact with neighbor trees m



possible to simply compute the stem area increment
∆G(x) over∆t: ∆G(x) is indeed proportional toP(x):
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It is thus possible to analytically compute the radius of
the stem after∆t, as well as the stem: root allocation ratio
of photosynthates (∆Cs/∆Cr) over the same period:
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3.2.2. Approximate steady-state solutions
for an initial conical stem

Under this initial condition and assuming that radial
increment can be neglected:R(x,t0) = R0 + εx. We again
look also for stationary solutions inP (to our knowledge,
the system cannot be solved in non-steady state). The
system (2) becomes:
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With a translation ofR0/ε for x, this system is equivalent to:
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P(x) is a combination of two independent solutionsP1

andP2, which are themselves combinations of the hyper-
bolic Bessel functions:I+ andI– (see Appendix 2). As in
equation (6), stem area increment can then be easily com-
puted:
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3.3. General shape of the solutions

In both above studied cases, the profile of photo-
synthate concentration depends on the initial stem taper
and on the conditions at limits (carbon provided by the
foliage and carbon given to the roots). As for general car-
bon allocation patterns (see Warren-Wilson in [42]),
stem growth results from a balance between a carbon
source (foliage) and the forces of the carbon sinks (the
roots and the stem). In our model, the force of the stem
sink is driven by the initial stem profile.

This general formulation allows for the simulation of
the taper of the profile of stem photosynthates concentra-
tion, thus the profile of stem radial increment, between
crown and roots for different initial conditions (see
figure 1). The profiles are qualitatively similar for both a
conical and a cylindrical stem: the only qualitative is that
solutions with a conical stem (combination of Bessel
functions) exhibit a sharp increase in photosynthates
concentration nearx = 0 (i.e. just below crown basis).

The models are flexible enough to simulate steeply in-
creasing profiles such as those observed for open-grown
trees, thin profiles of suppressed trees, or almost constant
profiles of Pressler’s rule. Buttress could be generated by
these equations with an increase of carbon concentration
near the roots. However, the system also predicts a higher
consumption of carbon when the initial radius of the stem
is larger. Buttress could then be simply described by the
initial slow height growth at the juvenile stage of the tree,
and an amplification, over the years, of this initial conical
shape.

4. CONSTRUCTION OF FLEXIBLE TAPER
EQUATIONS FOR RADIAL INCREMENT

From these theoretical solutions we heuristically
derive simple functions which aim at describing the ver-
tical variation of stem area increment along the whole
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Figure 1. x-axis: distance along the stem, measured downward
from crown basis.y-axis: stem photosynthates concentration.
Simulation of photosynthates concentration profiles between
crown basis (x = 0) and roots (x = Hc) with the [Sh] and [Ch]
models. Thick lines: the initial shape of the stem is conical; thin
lines the initial shape of the stem is cylindrical. Continuous
lines: case of a steep profile; broken line: case of a stable profile;
points: case of a declining profile.



stem. Because exponential profiles for concentration
(Eqs. (5–7)) are graphically similar and simpler than the
profiles associated to Bessel functions, we combine the
concentration profile of a cylindrical stem (Eq. (5)) with
the radius increment profile of a conical stem.

Two limit conditions are considered: (i) either foliage
and root photosynthates concentrations (Pf and Pr) are
fixed; (ii) or carbon flows from foliage (Ff) and to the
roots (Fr) are fixed. After notingz a r= ′ , these condi-
tions become:
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Two models ofPprofiles are derived from equations (12)
and (13):
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ParametersPf orFf control the shape of the curve near the
crown, whereasPr or Fr control its shape near the roots.

The system was initially built for the portion of the
stem situated between crown and roots. We will now as-
sume that these profiles can be valid all along the stem,
i.e. we replaceHc by the total heightH. Under this as-
sumption, the initial stem radius profile is supposed to be

a linear function ofx: R(x,0) = εx (R(0,0) =R0 = 0, at tree
tip). The profile of stem area increment (∆G(x)) is thus
obtained by simply multiplyingP(x) by εx. Since param-
etersPi or Fi andε are confounded, we simply usePi and
Fi in the rest of the paper. We finally obtain two models,
noted: [Sh] and [Ch].
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In the previous analysis, a mass loading of carbon is as-
sumed atx = 0 (apex). In order to take the distribution of
foliage within the crown into account, we propose four
other models:

(i): [ShX] and [ChX] with a linear increment of the
carbon profile only in the upper part of the stem (Ff andPf

are multiplied byx):
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(ii): [ShX2] and [ChX2] with a linear increment along
the whole stem (P(x) is globally multiplied byx).
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In these models, the parametersPf, Ff, Pr andFr do not
have a biological meaning, but they respectively control
the upper part of the stem (inside and near the crown) and
the bottom part of the stem (near the roots). Finally we
have 4 different models, because [Sh] (resp. [ShX2]) is a
reparametrization of the model [Ch] (resp. [ChX2]).

5. MODEL FITTING AND SELECTION

5.1. Model fitting

The 4 models were fitted on data from the 5 stands.
Because the parameterz was quite stable, it was first ad-
justed locally for each curve, and then set to 0.3 for all
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curves. The value ofH was set to the observed total
height of the tree. The models were fitted with a nonlin-
ear procedure. Results are presented intable II. Gen-
erally, the [ShX] model gives the best results based on
SSE. Convergence of the fitting algorithm is also more
efficient for this model (more rapid and not sensitive to
the starting values).

Therefore, subsequent analysis focuses on the [ShX]
model (Eq. (16)), which has only 3 parameters:Pf andPr,
which are related to foliage and roots vigor, andz which
is a combination ofr anda’. This model is an empirical
function heuristically derived from a process-based anal-
ysis of carbon allocation. It is very flexible and can de-
scribe profiles coming from suppressed as well as
dominant or open-grown trees.

5.2. Sensitivity analysis and biological
interpretation of the [ShX] model

Sensitivity analysis of the [ShX] model (Eq. [16]) was
performed (figure 2). The sensitivity functions exhibit
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Table II. Results of fitting of the 6 models (Eqs. 15–20) on the 5 stands data (Amance or Moncel-sur-Seille).SSEis the sum of squared
errors (mm4), N is the number of adjusted parameters (number of curves× number of adjusted parameters per curve). Fitting was carried
out with the software “Multilisa” developed by Jean-Christophe Hervé (ENGREF, Nancy).

Model Fitting choice Stands

EEC-s1 EEC-s2 EEC-s3 EEC-s4 Amance-s5

Curves number 186 177 227 228 72

Number of experimental points 1596 1493 1934 2027 1029

[Sh]
or
[Ch]

z fitted by curve SSE 4.19 × 10–7 3.77 × 10–7 5.80 × 10–7 4.06 × 10–7 6.92 × 10–8

N 558 531 681 684 216

zset to 0.3 SSE 9.60 × 10–8 8.55 × 10–8 8.64 × 10–8 7.16 × 10–8 1.15 × 10–9

N 372 354 454 456 144

[ShX]

z fitted by curve SSE 2.54 × 10–7 2.61 × 10–7 2.88 × 10–7 2.24 × 10–7 5.91 × 10–8

N 558 531 681 684 216

zset to 0.3 SSE 3.22 × 10–8 2.62 × 10–8 2.33 × 10–8 1.80 × 10–8 6.43 × 10–8

N 372 354 454 456 144

[ChX]

z fitted by curve SSE 7.43 × 10–7 7.21 × 10–7 4.58 × 10–7 5.29 × 10–7 9.32 × 10–10

N 558 531 681 684 216

zset to 0.3 SSE 4.48 × 10–8 2.73 × 10–8 2.45 × 10–8 1.91 × 10–8 6.59 × 10–8

N 372 354 454 456 144

[ShX2]
or
[ChX2]

z fitted by curve SSE 2.72 × 10–7 2.84 × 10–7 2.64 × 10–7 2.13 × 10–7 5.69 × 10–8

N 558 531 681 684 216

zset to 0.3 SSE 3.74 × 10–8 2.97 × 10–8 2.83 × 10–8 2.16 × 10–8 6.66 × 10–9

N 372 354 454 456 144

Figure 2. x-axis: distancex from tree apex.y-axis: stem area in-
crement G or sensitivity functions. For each sensitivity func-
tion,y-axis is scaled so that the maximum value is approximately
equal to 1: only relative variations are important (derivatives are
divided by 10 for∆G, by –0.25 forH, by –40 forz, by 10 forPr
and by 5 forPf). Sensitivity analysis of the [ShX] model. Thick
line: model [ShX] fromx = 0 (stem tip) tox = H (soil level).
Other lines: sensitivity functions (that is derivatives of [ShX]
with respect to each parameter). Parameters are:H = 10,z = 0.3,
Pr = 1,Pf = 1.



different behaviors, but for
∂

∂
∆G x

H

( )
and

∂
∂

∆G x

z

( )
which

are quite similar. However,H is not a parameter, but a
data, so that this similarity does not pose any problem in
the nonlinear fitting algorithm. The fact that the fitting al-
gorithm is more efficient for [ShX] model may indeed be
explained by the absence of a strong correlation among
the sensitivity functions of the three parameters. In order
to precisely estimate each parameter, it is theoretically
necessary to have data near the point where its derivative
peaks: forPf, data in the upper part of the crown are
needed; forPr, near the bottom of the stem; forz, in the
middle of the stem.

Figure 3 shows the effect of each parameter.z con-
trols the flexibility of the profile. In fact,z is a combina-
tion of two parametersr and a’; according to [7], a
drought would increaser and a fertilization would in-
creasea’. These variations ofr anda’ result in a thinner
increment profile in the bottom. These kind of profiles
are observed for suppressed trees.Pf controls the conicity
and the upper part of the stem, whilePr controls the butt
log. The model [ShX] automatically generates an
inflexion point in the upper of the stem, which is rarely
described by other models of stem profiles [6].

5.3. Examples of fitted curves

For each site, examples of adjustment are presented:
the site of Amance was used to test the flexibility of the
model because the measurements were dense along the
stem; whereas the 4 stands of Moncel/Seille were used to
analyse parameter variability in relation with calendar
year, silvicultural treatment and fertility.

5.3.1. Amance site

The trees are young and each annual stem growth unit
was sampled. The data are thus very dense along the
stem. Adjustment (figure 4) is worse for the buttress of
the open-grown tree “a1”. However, the model [ShX] is
quite flexible: it can be fitted to contrasted profiles such
as those of “a134” to the more conical form of “a2”. The
inflexion point near the apex is well described. The other
inflexion point near the butt log is less well described.

The parameterz is relatively stable aroundz = 0.3.
The shape of the profiles is quite constant.Pf gives the
conicity of the profile and depends on tree vigor (high
values for steep profiles and small values for declining
profiles). Pr is high for all trees at the beginning of
growth and decreases after, but for “a1”: this decrease
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Figure 3.x-axis: distancex from tree apex (m).y-axis: stem area
increment∆G (cm2 yr–1). Influence of model parameters on the
[ShX] model for the profile of stem area increment. Thick line:
predicted stem area increment for model ShX withH = 10,
z = 0.3, Pr = 1, Pf = 1. Other curves: predicted stem area
increment for variations around this model:z = 0.5, Pr = 0,
Pf = 0.

Figure 4. [ShX] model fitted to 4 trees from Amance site.x-axis:
distancex from tree apex (m).y-axis: stem area increment∆G
(cm2 yr–1).



occurs quicker for “a134” than for “a117” and “a2”;
which could be a consequence of stand closure that de-
pends on local stand density. Regarding interannual vari-
ability, Pr and Pf vary in the same way for all trees
(figure 5): this should reflect the role of the annual clima-
tic conditions.

5.3.2. Moncel/Seille site

With traditional stem analysis data, the model fits well
the shape of the stem increment (figure 6). Parameterz
does not vary a lot from a stand to another(figure 7). Pf is
higher for fertile stands (“s1” and “s2”), resulting in
thicker profiles in the upper part of the tree.Pr depends
on both site quality and silviculture: good fertility de-
creasesPr (“s1” and “s2”), whereas thinning increasesPr

(“s1” and “s3”).

These results are consistent with classical results:
thinning or sparse stands provide steeper profiles [24, 36,
37, 41], whereas site quality increases total production
along the whole stem [18, 23, 25, 27, 37, 41]. According
to the theoretical model, a larger value ofPr in low site
quality stands also reflects a larger share for roots in car-
bon partitioning.

6. INTEGRATION OF THE TAPER FUNCTION
FOR VOLUME PRODUCTION

Predicting or partitioning volume increment are often
key objectives of models of radial increment profiles.
Some papers have indeed shown the importance of the
flexibility of the taper function for the volume estimates
[19, 22–24, 29, 33–35]. The model [ShX] has therefore
two advantages: it is flexible and it can be analytically in-
tegrated. Annual stem volume increment is computed as:

∆V x
P zx xP z H x

zHx

H
=

+
=

∫ d
r f

0

sinh( ) sinh( ( – ))

sinh( ) (20)

∆V
Z HP zH ZP zH P zH P Z H z

=
+ +2 2 22r r f fcosh( ) – sinh( ) cosh( ) – ( )

sinh( )Z zH3 ⋅

7. DERIVATION OF THE MODEL
TO PROVIDE CROWN LIMITS

The variation of the slope along the stem increment
profile is usually related to the position of crown base.
For example, this assumption has been used to estimate
the position of the base of the functional part of the crown
from stem analysis data fitted to the Pressler rule [6].
Model [ShX] can be viewed as a generalization of
Pressler rule; this model can therefore be used to estimate
various singular points along the stem, which can then be
linked to crown structure and functioning.
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Figure 5. Time evolution of the estimated value of the parame-
ters of [ShX] model, fitted to 4 trees from Amance site.x-axis:
year of profile formation.y-axis: parameters (Pr: cm;Pf: unitless;
z: m–1).



On the sample trees, we calculated 3 points (Hb, Hf and
Hs; seefigure 8) and compared them with usual crown
measurements (Hfb, Hfw andHfc). Hb is the point, either
where stem radial increment is maximum, i.e.
∂ShX(x)/∂x = 0 (case of a declining profile), or where
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Figure 6. [ShX] model fitted to 4 trees from Moncel/Seille site.
x-axis: distancex from tree apex (m).y-axis: stem area increment
∆G (cm2 yr–1).

Figure 7. Comparison of the estimated value of the parameters
of [ShX] model, fitted to 24 trees from Moncel/Seille site.x-axis:
stand.y-axis: parameters, with their average and 95%-confi-
dence interval (Pr: cm;Pf: unitless;z: m–1).

Figure 8. Illustration of how crown ba-
sis can be defined from the variation of
stem area increment predicted by the
[ShX] model. Pressler’s crown basis, as
defined by Deleuze and Houllier [6], is
positioned with broken lines. Top: case
of a stressed tree with a sinusoidal
increment profile. Bottom: case of a
dominant tree with an increasing
profile. y-axis: distancex from the
apex.x-axis from left to right: predicted
stem area increment from the [Shx]
model, and its first-, second- and third-
order derivatives.



∂ShX(x)/∂x is minimal (case of a steep profile).Hf is the
inflexion point of the profile in the upper part of the stem,
i.e. where∂2ShX(x)/∂x2 = 0. Hs is an intermediate point
where the curvature changes, i.e. where∂3ShX(x)/∂x3 = 0.
The position of crown basis was also estimated using the
Pressler rule criterion [6].

Figure 9shows the correlation between these theoreti-
cal heights and the measured heights.Hfb gives the lowest
correlations, but this level is quite variable in the crown
and highly dependent on local light conditions of the
lowest living branches, which do not contribute a lot, if at
all, to stem growth.Hfw gives the higher correlations and
is well connected toHs. Hfc is better related toHf

(inflexion point).

The [ShX] model could thus provide a means to better
understand the relationship between external measure-
ments or observations and the internal growth of the

stem. This is a key point for growth simulators of tree
growth and wood quality, which need to better describe
the connection between external environmental condi-
tions of the tree (through the crown structure) and inter-
nal stem radial increment and wood formation.

From stem analysis data, we can also reconstruct the
past evolution of crown basis. Infigure 10, two examples
are given: the “a17” tree from stand “s1”, for which sam-
pling intensity was low and which exhibits an irregular
evolution of estimated crown basisHb; the “a117” tree
from stand “s5”, for which stem analysis data were more
numerous and whose estimated crown recession is more
regular. Beside sampling intensity, crown recession of
tree “a17” was strongly influenced by the thinning that
occurred in 1983, whereas “a117” had a more stable en-
vironment (crown recession was more regular and started
probably around 1981 when the stand closed).
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Figure 9. Correlations between theoretical crown basis (Hb, Hf andHs), derived from the [ShX] model and measured crown basis
(Hfb first living branch,Hfw first living whorl andHfc first contact). All trees are featured. The first bisector line is drawn for each relation.



8. CONCLUSION

The first result of this study is theoretical: we propose
a formal link between carbon partitioning in process-
based models and stem radial increment profiles in usual
tree growth and yield models. Stem increment profiles
are indeed very similar to allocation in the tree. These
profiles should therefore be as variable as allocation co-
efficients, they also should be affected by environmental
conditions. The description of cambium as a continuous
sink allows to better take secondary growth into account
than with a compartment-based tree growth model. The
reaction-diffusion model provides a practical tool for

describing carbon partitioning among tree compartments
and along the stem. The topology and geometry of the
tree are thus of prime importance for the carbon distribu-
tion. Stem can no more be considered as the third com-
partment in a standard plant process-based model: the
continuous reaction-diffusion model provides a means to
account for secondary growth, which is a characteristic
feature of the trees.

The second result of this study is practical: we pro-
pose a simple parametric equation for modeling the verti-
cal profile of stem radial increment. This model is
flexible and accounts for the inflexion point in the upper
part of the profiles. It has only 3 parameters that can be
interpreted in terms of tree vigor and structure, and that
can be related to environmental variations:Pf andPr are
related to total wood production, whereas the ratioPf:Pr

is linked to stem:root carbon partitioning;z seems to be
quite stable and independent from external conditions,
but it could be variable with species. These parameters
are thus synthetic indicators of how trees react to varia-
tions in their growth condition.

The third result is a method for reconstructing past
crown recession using stem analysis data. This method is
based on the analytical study of the shape of the succes-
sive radial increment profiles. Stem analysis data contain
a lot of information, which could be useful to interpret
past growth. We need more data with well known stands
to go on with this idea.

Our flexible model is finally a useful tool to extract in-
formation from stem analysis or to predict stem growth
variations and wood quality from environmental varia-
tions. This model should now be applied to other conifers
and tested on broadleaves.
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APPENDIX 1: Non stationary solutions
of the reaction-diffusion model for an initial
cylindrical stem

Equation (4) can be solved using spectral analysis and
Fourier transformation (FT) ofP. Let (p,q) ∈ C2:

FT i i d d
R

( )( , ) ( , ) exp(– – ) .P p q P x t px qt x t= ∫1

2 2π (21)
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Figure 10. Reconstructed crown recession as predicted from
stem analysis data fitted to [ShX] model.x-axis: year of growth.
y-axis: total heightH, and heights of theoretical crown basisHs,
Hf and Hb. Measured crown basis are noted for the year of
sampling (Hfc, Hfw and Hfb). Top: tree a17 from stand 1 in
Moncel/Seille. Bottom: tree a117 from Amance.



The Fourier transformation of the partial derivatives
of P can be simply calculated through an integration by
parts. Fort:

FT i i d d
R

( )( , ) ( , ) exp(– – )
∂
∂ π

∂
∂

P

t
p q

P

t
x t px qt x t= ∫1

2 2

{FT d i i

i

R
( ) [ ( , ) exp(– – )]

–

–

∂
∂ π

∂
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FT i FT( ).( )
∂
∂
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Similarly, for x we get:

FT i FT( ).( )
∂
∂
P

x
p P= (23)

Equation (4) thus becomes:

(i +a )FT( ) = 0.q
p

r
P+ ′

2

(24)

Solution of (24) is the Dirac functionδ(i +a )q
p

r
+ ′

2

.

Solution of (4) is then obtained by the inverse Fourier
transformation:

P x,t P qt px q
p

r
( ) = exp(i i with i +a = 00 + + ′),

2

(25)

p andq can be written as:

p

q a
r
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
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whereα andβ are two real constants. Solutions thus be-
come:
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Since only real solutions ofP can be acceptable,

α =
rx

t2
and the solutions become:
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4
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whereP0 andβ are calculated thanks to initial and limit con-
ditions. Sincer, β2 anda’ are positive,P never runs away.

APPENDIX 2: Stationary solutions
of the reaction-diffusion model for an initial
conical stem

We solve the general system:
∂

∂
∂

∂

P x t

t
P x t

r x
a xP x t

( , )
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– ( , )
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0

0
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wherea'' = 2πaε /S. The analytical solutions are combina-
tions of hyperbolic Bessel functions I+ and I–

(Gradshteyn and Ryzhik, [11]) which are defined by:
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There are two independent solutionsP1 andP2:
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