Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites : revision of current hypotheses?

Reichstein Markus, Tenhunen John D., Roupsard Olivier, Ourcival Jean-Marc, Rambal Serge, Miglietta Franco, Peressotti Alessandro, Pecchiari Marco, Tirone Giampiero, Valentini Riccardo. 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites : revision of current hypotheses?. Global Change Biology, 8 (10) : pp. 999-1017.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (320kB)

Autre titre : Effet d'une sécheresse sévère sur les flux de CO2 et d'H2O de l'écosystème sur trois sites sempervirentes méditerranéens : révision des hypothèses actuelles ?

Abstract : Eddy covariance and sapflow data from three Mediterranean ecosystems were analysed via top-down approaches in conjunction with a mechanistic ecosystem gas-exchange model to test current assumptions about drought effects on ecosystem respiration and canopy CO2/H2O exchange. The three sites include two nearly monospecific Quercus ilex L. forests - one on karstic limestone (Puéchabon), the other on fluvial sand with access to ground water (Castelporziano) - and a typical mixed macchia on limestone (Arca di Noè). Estimates of ecosystem respiration were derived from light response curves of net ecosystem CO2 exchange. Subsequently, values of ecosystem gross carbon uptake were computed from eddy covariance CO2 fluxes and estimates of ecosystem respiration as a function of soil temperature and moisture. Bulk canopy conductance was calculated by inversion of the Penman-Monteith equation. In a top-down analysis, it was shown that all three sites exhibit similar behaviour in terms of their overall response to drought. In contrast to common assumptions, at all sites ecosystem respiration revealed a decreasing temperature sensitivity (Q10) in response to drought. Soil temperature and soil water content explained 70-80% of the seasonal variability of ecosystem respiration. During the drought, light-saturated ecosystem gross carbon uptake and day-time averaged canopy conductance declined by up to 90%. These changes were closely related to soil water content. Ecosystem water-use efficiency of gross carbon uptake decreased during the drought, regardless whether evapotranspiration from eddy covariance or transpiration from sapflow had been used for the calculation. We evidence that this clearly contrasts current models of canopy function which predict increasing ecosystem water-use efficiency (WUE) during the drought. Four potential explanations to those results were identified (patchy stomatal closure, changes in physiological capacities of photosynthesis, decreases in mesophyll conductance for CO2, and photoinhibition), which will be tested in a forthcoming paper. It is suggested to incorporate the new findings into current biogeochemical models after further testing as this will improve estimates of climate change effects on (semi) arid ecosystems' carbon balances. (Résumé d'auteur)

Mots-clés Agrovoc : Quercus ilex, Scrub, Juniperus, Sécheresse, Cycle du carbone, Bilan hydrique, Respiration, Modèle de simulation, Stomate, Température du sol, Teneur en eau du sol, Évapotranspiration

Mots-clés géographiques Agrovoc : France, Italie

Classification Agris : F60 - Plant physiology and biochemistry
P33 - Soil chemistry and physics

Auteurs et affiliations

  • Reichstein Markus, Universität Bayreuth (DEU)
  • Tenhunen John D., Universität Bayreuth (DEU)
  • Roupsard Olivier, CIRAD-CP-COCOTIER (VUT)
  • Ourcival Jean-Marc, CNRS (FRA)
  • Rambal Serge, CNRS (FRA)
  • Miglietta Franco, CNR (ITA)
  • Peressotti Alessandro, Università degli Studi di Udine (ITA)
  • Pecchiari Marco, Università degli Studi di Udine (ITA)
  • Tirone Giampiero, Università degli studi della Tuscia (ITA)
  • Valentini Riccardo, Università degli studi della Tuscia (ITA)

Autres liens de la publication

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-02 ]