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Analysis of data on diversity consists mostly of analysis of crossing tables 
of taxonomic units-species, populations, cultivars, etc.-and of variables 
that characterize the diversity. These variables are quantitative agronomic 
characters, morphological descriptors, mostly qualitative, biochemical 
markers (isozymes), or molecular markers (RFLP, RAPD), often coded as 
presence or absence. The taxonomic units are generally observed individually, 
but they can also correspond to populations; the observations are thus of 
means of characters, of allele frequencies, and so on. In any case, the analysis 
of these data aims to discover a possible structure of taxonomic units by 
analysis of resemblances or dissimilarities between these units. 

This objective comes under classification, a vague term that has two 
meanings in current usage. The first involves the separation of objects into 
homogeneous groups. This ambition has been that of all the great taxonomists, 
from Aristotle to Linnaeus. The secon!i meaning comes under the action of 
logical ordering. This is essentially to do with relations of order between 
taxonomic units, that is, with relations ::>f filiation between units in the sense 
of evolution, which is phylogenetics. 

Both these tasks may result in graphic representations in the form of a 
tree. The informative content of each is, however, fundamentally different. 
In the first case, the nodes of the tree correspond to concepts of grouping. In 
the second, the nodes are the parental units that are not observed but are 
supposed to exist, for example, ancestral forms that have disappeared. The 
links thus include the temporal dimension of evolution. 

The problem of diversity treated here comes partly from these two 
processes, since we wish to define groups of comparable units, as well as to 
describe the relations of parentage between these groups. 

Two approaches can be taken to treat evolutionary organization. The 
first, called phenetic, describes an organization from objective measures of 
dissimilarities between the units and refers the introduction of genetic 
hypothesis to the interpretation. These dissimilarities are estimated overall 
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for all the characters observed and the number of characters gives relevance 
to the measures. It is often extremely difficult to detect the organization of 
units by direct examination of their dissimilarities. The object of the analysis 
is thus to find a close but easily readable representation of them: a factorial 
plane or a tree structure. The advantage of readability is gained at the cost of 
a certain loss of information, a loss that one of course seeks to minimize. 

The second approach, called cladistic, directly looks at observed 
characters and attempts to distinguish identical characters inherited from a 
common ancestor, which are only informative, from phenomena of accidental 
convergence. It relies on a model of genetic transformation and was 
established initially on morphological characters that were known to be 
monogenic and for which the order of different modalities in terms of 
evolution was known. This approach is now most often used for genome 
sequencing data provided with an explicit genetic model, of the type 
developed by Jukes and Cantor (1969) or derived from that type. 

The cladistic or related methods such as the methods of compatibility or 
likelihood are not described and are not within the scope of this work. The 
reader is referred, for example, to Darlu and Tassy (1993). The nature of 
markers used often allows only the use of phenetic approaches relevant to 
the analysis of dissimilarities. 

The object of this chapter is to present relevant methodological aspects 
of these approaches. The base data will be a table of taxonomic units described 
by markers of diversity. There may also be a stacking up of tables when the 
same set of units is characterized by several series of markers of various 
kinds that cannot be grouped together. These tables can be considered 
separately at first, but researchers ultimately try to analyse them simul­
taneously. 

This chapter is made up of three major parts. 
The first involves the initial step of any analysis, the definition of a 

measure of the resemblance or dissimilarity between individuals. The choice 
of this measure is of primary importance and corresponds to a deliberate 
choice of perspective on the data. When the individuals are populations and 
the observations are of allele frequencies, various measures of dissimilarity, 
called genetic, can be used-e.g., Nei distances, Gregorius distances. Their 
properties have often been studied, for example in Lefort-Busson and de 
Vienne (1985). When the data are of individuals, described by a series of 
characters, the nature of variables-quantitative, qualitative, binary­
determines the usable types of dissimilarity. It will be shown, on the example 
of molecular markers of RFLP or RAPD type, that knowledge of the biological 
characteristics of markers helps us choose an index of dissimilarity. 

The second part describes factorial methods. Once a two-by-two 
dissimilarity matrix between individuals is established, it is analysed so that 
a simplified but faithful representation can be found. If the dissimilarity is 
Euclidean, factorial methods of analysis can be used. The bases of principal 
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methods are summarized, particularly techniques of simultaneous analysis 
of several tables. If the dissimilarity is not Euclidean, methods of 
multidimensional scaling can be used to find a decomposition on a fixed 
number of axes. These iterative methods require considerable time for 
calculation when there are a large number of units to be treated. They have 
not been covered in this work, and the reader is referred, for example, to 
Escoufier (1975). 

The third part concerns tree representations. An evolutionary process, 
by accumulation of transmissible mutations, will produce an organization 
that can be represented in the form of a tree. This representation, because of 
its biological foundation, is particularly relevant for the analysis of diversity, 
even if the modalities of evolution are generally more complex. Various 
methods for inferring trees will be presented, as well as techniques that allow 
the construction of synthetic trees from several types of markers. 

Factorial methods and tree methods constitute two very different 
approaches to the representation of diversity. They must be considered 
complementary rather than concurrent. Factorial methods aim above all to 
make an overall representation of diversity that is as far as possible free of 
individual effects. On the other hand, the more commonly used tree methods 
tend to represent individual relations faithfully. They are thus two different 
ways of viewing the data. 

The main statistical software proposes various methods of factorial 
analysis. The tools linked to analysis of dissimilarities and to their tree 
representation are less frequent. The Ntsys software is for instance a complete 
and easily accessible software (Rohlf, 1987). Various non-available functions 
or partly modified methods have been grouped in a specialized software 
available from the authors (Darwin, dissimilarity analysis and representation; 
Perrier, 1998). 

CHOOSING A DISSIMILARITY INDEX 

The aim of a dissimilarity index is to define a means of measuring the 
resemblance (similarity) between two individuals or, on the other hand, th~ 
difference (dissimilarity), since one can go from one to the other simply by a 
linear transformation. 

There are, in fact, a large number of measures of dissimilarity and, 
depending on the data, various choices are available. Some of these 
dissimilarities have mathematical properties useful for the analysis or are 
stable in the face of data errors, which are relevant arguments for their use. 
The final choice depends on the real informative content of the markers used 
and to the point of view one wishes to take towards this information. 

Finally, certain dissimilarities, such as ultrametric or additive distances, 
have special properties and can be represented in the form of a tree. There is, 
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of course, no reason for the measure established on the data to have these 
properties. The object of tree construction methods is to transform the measure 
established on the data into a tree-representable dissimilarity, with the least 
possible deformation. 

Definitions and Properties 

The most general mathematical object representing the difference is a 
dissimilarity; this is a function d of the set of pairs (i,j) of individuals in the 
set of positive or null reals, symmetrical (d(i,j) = d(j,i)) and such that d(i,i) = 0 
for any i. This definition is relatively simple and covers a large number of 
possible measures. On the other hand, it opens up only a few mathematical 
properties and it is necessary to add other constraints to acquire certain useful 
properties. 

A distance, sometimes called a metric, is a particular dissimilarity 
obtained by adding the condition d(i,j) = 0 => i = j and above all the triangular 
inequality between three individuals, d(i, j) ~ d(i,k) + d(j,k). This natural 
condition translates simply into the possibility of representing any triplet of 
points by a two-dimensional triangle. This very useful property allows us 
especially to avoid the problem of negative edge lengths in the construction 
of a tree. 

CITY BLOCK AND EUCLIDEAN DISTANCE 

An important group of distances is made up of Minkowski distances of order 
p(p ~ 1 ). A distance belongs to this group if there exists an integer K and a 
series of K values xik applicable to each individual i, the distance thus being 
written as d(i,j) = (:Ek I xik - xjk I P)11P. 

The only cases used in practice correspond to the values 1 and 2 of p. 
When p = 1, the index is known as the city block, d(i,j) = :Ek I xik - x.k I. 
For p = 2, the usual Euclidean distance is found as follows: d(i,j) = 
(:Ek I xik- xik I 2)112• Of course, by definition, city block or Euclidean distances 
are obtained when we calculate a distance from a table of individuals x 
variables by summing, the absolute values or the squares of the deviations 
between i and j. However, certain indexes, for example those calculated on 
data of presence or absence, can be of either of these two types without that 
following evidently from the mode of construction. 

The city block distance and Euclidean distance belong to the same group 
and are linked by certain relationships. It can be shown, for example, that 
any Euclidean distance is a city block distance. It has also been shown that 
the square root of a city block distance is a Euclidean distance. 

POWER TRANSFORMATION 

Power transformations of a dissimilarity, for certain powers, give it 
properties of a distance or even of a Euclidean distance. First, we must recall 
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that two dissimilarities d and d are equivalent in order if d(i,j) ::;; d(k,l) <:::> 
d(i,j) ::;; d(k,l). These two dissimilarities arrange the pairs of individuals in 
the same fashion and are thus of comparable interpretation. In particular, if 
d' can be written as an increasing monotone function of d, then d' and d are 
equivalent in order. This is the case of power functions a(a ~ O); da. and d 
are equivalent in order. 

It can be shown that, if d is a dissimilarity, one can always find a value a 
between 0 and 1 such that then for any A. (0 ::;; A. ::;; a), di... is a distance that, by 
the preceding property, is equivalent in order to d. Thus, if the informative 
content of markers results in the choice of a measurement that is only a 
dissimilarity, a power transformation can give it the properties of a distance 
that is useful for methods of classification. 

Similarly, it can be demonstrated that if d is a distance, one can always 
find a value a between 0 and 1 such that for any A.(O::;; A. ::;; a), di... is a Euclidean 
distance equivalent in order to d. A power transformation can thus allow the 
passing from a distance to a Euclidean distance just as one passes from a 
dissimilarity to a distance. A useful application involves factorial analysis. 
Although they apply only to Euclidean distances, these methods can be used 
for any dissimilarity after an appropriate power transformation. This 
transformation seems preferable to the usual technique of adding a constant, 
possibly very large, to each pair distance, a technique less meaningful with 
respect to the initial data. 

In some cases, the a values of this transformation are known; for example, 
it has already been indicated that the square root (a = 1h) of a city block 
distance is a Euclidean distance. Often it is not known how to establish this 
value, which must be estimated numerically on the data. 

U LTRAMETRIC AND ADDITIVE TREE DISTANCE 

In adding supplementary constraints to the definition of a dissimilarity, we 
can give it the property of being a distance that can be represented as a tree. 
The classification methods all aim to approach as closely as possible, m terms 
of some criterion, the dissimilarity observed by one of these representable 
distances. 

The best known of these dissimilarities is the ultrametric, a distance 
verifying the inequality d(i,j) ::;; max[d(i,k), d(j,k)] for any three individuals 
i, j and k. This property expresses that, among the three distances, the.two 
largest are equal: if d(i,j) is the smallest, then d(i,j) ~ d(i1k) = d(j,k). Any 
triplet of points thus forms a sharp isosceles triangle. This property allows 
a representation in the usual form of a dendrogram (Fig. la), which is a 
tree that has a particular point, the root, located at an equal distance from 
all the leaves of the tree. It is shown that an ultrametric is a Euclidean 
distance. 
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In the 1970s, the distance called the additive tree distance was proposed. 
It verifies the inequality d(i,j) + d(k,l)::;; max[d(i,k) + d(j,l), d(i,l) + d(j,k)] for any 
four individuals i, j, k and I. This property, called the four points property, is 
an extension of the ultrametric condition to four points. It expresses that, 
among the three sums of distances two by two, the two largest are equal. 
This property allows a tree representation. It is verified on an example of 
four points (Fig. 2) that the condition is effectively respected since d(i,j) + 
d(k,l) = ai + ai + ak + a1 and d(i,k) + d(j,l) = d(i,l) + d(j,k) = a; + ai + ak + a1 + 2a,. 
This tree can be represented in a hierarchical form such as a dendrogram 
(Fig. lb). However, in the absence of an objective root, a radial representation 
is often preferred (Fig. le). 

The ultrametric condition is shown to be only a particular case of the 
four points condition. The ultrametric appears thus as an additive distance 
of a particular tree subjected to a more narrow constraint. This supplementary 
constraint is that, among three individuals, the two largest distances are equal, 
a constraint absent in additive tree distance, which allows for unequal branch 
lengths. This lesser constraint thus enables a more faithful representation of 
initial dissimilarities. 
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Fig. 1. Ultrametric (a) and additive distance in hierarchical representation (b) or radial 
representation (c). 

j 

Fig. 2. Tree with four leaves and edge lengths. 
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INCLUSION RELATION BETWEEN FAMILIES OF DISSIMILARITIES 

Different families of dissimilarities have been established by adding 
supplementary constraints from the initial definition of a dissimilarity. This 
induces relations of inclusion between the different families (Fig. 3). The 
ultrametrics, for example, are Euclidean distances and particular additive 
distances. They are themselves city block distances, which in turn are 
distances, a particular case of dissimilarities. When we look at Fig. 3 from 
top to bottom, we find indexes supporting conditions that are increasingly 
strong and thus less and less apt to describe accurately the relations between 
individuals. Conversely, from the bottom to the top, the indexes lose their 
properties of representability. The ultrametrics and the additive distanees 
can be represented in the form of a tree in two dimensions, and the Euclidean 
distances and city block distances can be represented in spaces of higher 
dimension. On the contrary, distances and dissimilarities have no useful 
properties for this purpose. Thus, among the representable distances, the 
city block distance appears to be the least constrained. In the absence of a 
contrary indication, the choice must logically include such an index. 

In practice, a factorial analysis on a Euclidean distance and a tree 
representation are often used in parallel. The level equivalent to the Euclidean 
distance and the additive distance can be noted on the graph. The coherence 
would thus require that the tree representation be founded on an additive 
distance rather than on an ultrametric, as is often the case. 
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I 

city block 

I I 
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Fig. 3. Relations between groups of dissimilarities (Critchley and Fichet, 1994). 
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Measures of Dissimilarities on Quantitative Variables 

The dissimilarity most often used on quantitative data is the Euclidean 
distance· d(i,j) = [Lk (xik - xjk)2]112 (xik is the value of the ~ variable for the 
individual i). It is classical in statistics and can be treated by factorial methods. 
If the variables are of different nature, it is often useful to reduce them and, 
to render the value of the distance independent of the number P of variables, 
one often balances it with 1/P. From this we get the general expression 
d2(i,j) = (Lk [(xik- xjk)/crk]2)/P. 

The mathematical advantage of the city block distance, d(i,j) = Lk I xik -
xjk I, has been emphasized. It has been observed that the Euclidean distance, 
when the differences are squared, gives a heavy weight to significant 
deviations. This is not always inherently justified; the city block distance, 
which gives the same weight to all the differences, thus seems preferable. 
This distance is generally balanced by the number P of variables and, if the 
order of magnitude of variables is very different, it is necessary to bring 
them to the same scale, for example by relating them to their amplitude. 

·Measures of Dissimilarities on Presence/Absence Variables 

The descriptors of genetic diversity are often binary variables, which represent 
the absence or presence of a character. For biochemical or molecular 
descriptors, these characters in general code the presence or absence of a 
band on an electrophoresis gel. We conventionally use 0 to denote absence 
and 1 to denote presence. 

Several measures of resemblance between individuals, or association 
coefficients (Sneath and Sokal, 1973), have been defined on binary data. They 
have most often been proposed by researchers in a particular discipline­
botany, zoology, palaeontology-and are justified mainly because they 
accurately translate the idea these researchers have of the resemblance 
between their subjects of study. We will limit ourselves here to discussing 
indexes for which we can explain the logic of construction and which present 
a reasonable behaviour (Beaulieu, 1989). For example, if a new marker is 
added, the dissimilarity between two individuals must increase (or decrease) 
if these two individuals take different (or identical) values for this marker. 

For two individuals i and j, a is the number of markers that are 
simultaneously present in i and j. Similarly, d is the number of absences in 
common, bis the number of presences in i and absences in j, and c is the 
number of absences in i and presences in j. Table 1 lists 13 of these indexes. 
They are customarily expressed in the form of the similarity S, dissimilarity 
being obtained for these indexes by D = 1 - S. 

The general principle of construction of all these indexes is the same, the 
similitude is estimated by the number of agreements. However, this value 
does not have an absolute meaning and must be reported with a basis of 
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Table 1. Major indexes of similarity on presence/absence variables 

Authors Expression Properties• 

(1) (2) (3) (4) 

Sl Russel and Rao a/P y y y 
S2 Simpson a/min[(a + b), (a+ c)] n n 
S3 Braun-Blanquet a/max[(a + b), (a+ c)] 
54 Dice a/[a + (b + c)/2] 
5.5 Ochiai a/[(a + b), (a+ c)]112 n n S7,S8 
S6 Kulczynsky 1 (a/2)([1/(a + b)] + [1/(a + c)] n y 
S7 Jaccard a/(a + b + c) n n 
SS Sokal and Sneath un2 a/[a + 2(b + c)] y y y 54,58 
S9 Kulczynski 2 a/(b + c)] y y y 54,S7 
SlO Sokal and Michener (a+ d)/P 
SU Rogers and Tanimoto (a+ d)/[a + d + 2(b + c) y y y Sll,S12 
S12 Sokal and Sneath unl (a+ d)/[a + d + (b + c)/2) y y y Sll,S12 
S13 Sokal and Sneath un3 (a +d)! (b+c) n n Sl0,511 

*(1) The associated dissimilarity is (y) or is not (n) a distance. (2) It is (y) or is not (n) a city block 
distance. (3) Its square root is (y) or is not (n) Euclidean. (4) It is equivalent in order to the indexes 
indicated (absence of mention indicates that the response is not presently known). 

comparison. The indexes differ in their mode of estimating the number of 
agreements and in the choice of the basis of comparison. 

The estimation of agreements depends on the meaning assigned to the 
absence modality. If only modality 1 is considered informative, modality 0 
expresses mainly an absence of information; then the number of agreements 
is a, the number of presences in common (indexes 51 to 59). If 0 and 1 are 
informative and can be considered as two modalities of a qualitative variable, 
then the number of agreements is a + d, the number of presences and absences 
in common (indexes 510 to 513). The choice between these two attitudes 
depends entirely on the nature of characters analysed and is a prerequisite to 
any reflection on the choice of a dissimilarity index. However, it is not always 
easy to separate these two points of view. Regarding genetic markers of 
diversity, it is clear that biological knowledge of the markers being considered 
will enable us to choose the most appropriate model. 

AGREEMENTS ESTIMATED BY PRESENCES IN COMMON: INDEXES 51 TO 59 

The numerator of these indexes is always a. The denominator should be an 
estimation of the number of agreements that two identical individuals will 
present. For index 51 this number is P, the number of variables. This choice is 
not judicious since two individuals can thus be identical only if they have the 
value 1 for all the variables. It is better to estimate the denominator from 
numbers of presences in i, a + b, and in j, a + c. Of course, these two values are 
not equal, and a consensual expression must be defined for them. We can 
take the minimum (52), the maximum (53), or a series of values between 
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these two extremes: the arithmetic mean (54), the geometric mean (55), and 
the harmonic mean (56). The knowledge of characters can sometimes guide 
the choice of one of these indexes. However, in the absence of a clear 
justification, we prefer to retain the neutral behaviour of the Dice index (54) 
based on the arithmetic mean. 

Another approach is to consider that the basis of comparison is the 
number of presences found in i or in j, a + b + c, whence the Jaccard index 
(57). With the 57 index, as with 51, a is compared to the number of variables, 
but the double absences are treated as missing data. This point of view is, in 
a good number of cases, highly reasonable and explains the success of the 57 
index, which is certainly one of the most widely used. 

Index 58, which is used often, and index 59 seem difficult to justify. Note 
that indexes 54, 57 and 58 can be written in the form S = a/[a + p(b + c)] with, 
respectively, p = 1h, p = 1, and p = 2. We could construct new indexes by 
choosing other values for p. 

AGREEMENTS ESTIMATED BY PRESENCES AND ABSENCES IN COMMON: 

INDEXES 510 TO 513 

Indexes 510 to 513 are obtained by extension of indexes 51, 58, 54 and 59, 
simply replacing a by a + d. On the evidence, these indexes must be 
symmetrical in a and d, the notation 0 and 1 being purely arbitrary. The 
extension of other indexes leads to indexes that are non-symmetrical in a 
and d, or sometimes non-symmetrical in b and c, and thus unacceptable. The 
most appropriate in many cases are index 510, an extension of 51 but also of 
57, the Jaccard index, and 512, an extension of 54 based on the arithmetic 
mean. Indexes 512, 510 and 511 can be written in the form S = (a + d)/[(a + d) 
+ p(b + c)] with, respectively, p = 1h, p = 1, and p = 2. 

PROPERTIES OF INDEXES 51 TO 513 

Complementary to the logic of construction, the possession of particular 
properties can guide the choice of an index. Table 1 summarizes certain 
properties of dissimilarities associated with the proposed indexes. A primary 
characteristic is the fact of being a true distance. It can also be shown that 
some of these indexes are city block distances. Although none of them is a 
Euclidean distance, it is known that city block distances have Euclidean square 
roots. Index 55, without being a city block distance, also has a Euclidean 
square root. These indexes, after transformation, can thus be treated by 
factorial analysis. 

Finally, several of these indexes, which have comparable modes of 
construction, are equivalent in order. Between several indexes giving identical 
orders, those having useful properties are preferred, 510 or 511, rather than 
512, for example. 
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The algorithms of tree construction are highly sensitive to small variations 
of dissimilarities. The behaviour of these different indexes faced with data 
error,s is thus an important criterion for selection. This behaviour can be 
addressed by studying the properties of a matrix subjected to a random noise 
exchanging the values 1 with 0 and inversely, with a probability t. It is thus 
possible to estimate the expectation D' of the index considered for a noise of 
rate t of data. 

Figure 4 presents, for indexes SlO, SU, and Sl2, symmetrical in 0 and 1, 
the value of D' as a function of D. The rate of error used is 0.10, but that 
value does not change the meaning of conclusions that may be drawn. For 
index SU, data errors may lead to serious overestimations of small values of 
dissimilarity, while large values are relatively not modified. Index S12 has an 
inverse behaviour in leaving the small values relatively not modified and 
underestimating the large values. Index SlO has a more neutral behaviour; 
the bias is null for D = 0.5 and increases symmetrically. It is thus a useful 
compromise. However, the most widely used algorithms of tree construction 
are agglomerative; the smallest dissimilarities determine the first groups, 
which then determine the entire tree. It is thus preferable to minimize the 
noise on the small values, as with index Sl2. 

D' t=0.10 . 
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Fig. 4. Estimation by simulation of dissimilarities D' associated with 510, 511 and 512 for an error 
rate of 0.10 as a function of initial dissimilarity D. 

The study of indexes that estimate the agreements by presences in 
common is more complicated. The distortions observed are greater than for 
the symmetrical indexes. They can be very high (up to 50% for the small 
values of D, even with rates of error of 0.05), when the frequencies of 0 are 
high (Fig. 5). This situation is frequent with highly polymorphic molecular 
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Fig. 5. Estimation by simulation of dissimilarities D' associated with index 57 (Jaccard) for an 
error rate of 0.10 as a function of initial dissimilarity D. 

markers, for which the number of 1 for each individual is very low. This type 
of matrix must therefore be used with some caution, and the stability of 
structures must be verified by comparing results obtained on the complete 
matrix and free of particularly rare markers. Such markers lead to an increase 
in the number of absences in common for most of the pairs of individuals. 
Indexes S4, SS and S6, corresponding to three types of mean for the 
denominator, have a closely comparable behaviour. They tend to give smaller 
distortions of small values of dissimilarity than the Jaccard index, S7, which 
in tum is more favourable than SS. These two indexes are thus preferred. 

Measures of Dissimilarities on Qualitative Variables 

Here the characters are of qualitative variables that present a finite number 
of modalities: petal colour, form of stigmata, and so on. Intuitively, two 
individuals are closely related if they have the same modality for a large 
number of variables. · 

The usable indexes correspond to the generalization of indexes presented 
for the binary values symmetrical in 0 and 1, which are in fact qualitative 
variables of two modalities. 

The number of variables in agreement is m, the number of variables in 
disagreement is u, and P is always the number of variables. The corresponding 
indexes of similarity are written as follows: 

m/(m + u) = m/P (Sokal and Michener); 
m/(m + 2u) = m/(P + u) (Rogers and Tanimoto); 
2m/(2m + u) = 2m/(P+ m) (Sokal and Sneath). 

The dissimilarity is obtained directly by d = 1 - s. 
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The x2 distance is often used on a binary table. For one variable, and for 
each of these modalities, a binary is created that takes the value 1 if the 
individual presents this modality, 0 if not, and the classic x2 is calculated on 
this new data matrix. This distance does not give the same weight to all the 
modalities, particularly to rare modalities, which are weighted heavily. 
Although such an effect can be sometimes desirable, it often is not. 

Choice of Index of Similarity on Biochemical and Molecular 
Markers 

The genotype resemblance between two individuals can be measured by a 
genetic similarity defined from allele forms of genes observed. Certain types 
of markers (e.g., isozymes, microsatellites) generally give direct genetic 
information and allow coding in alleles by identification of the allele 
composition of each locus. The genetic similarity, as defined here, can thus 
be directly estimated. Other markers do not allow access to all of the genetic 
information and only one phenotype is observed. The genetic similarity cannot 
be calculated directly, but the characteristics of these markers be used to 
define the most relevant similarity index. Moreover, it is useful to evaluate 
the order of magnitude of the error related to this loss of information . 

. MULTIPLE ALLELE MARKERS 

The genetic similarity Tit between two individuals i and j is defined a priori as 
the mean on L loci of the ratio of the number n15 of alleles for the locus l 
present simultaneously in the two individuals and of the number n1c of alleles 
compared: Tij = (~1 n1/n1c)IL. If 7t is the ploicj.y, n1c woµld be 7t for all the foci. 
When n5 = ~1 n15 and nc = nL, then Tii = n/nc, = n/(nL). 

For a diploid species, each allele of a locus can be coded as a variable 
taking the values 2, 1 or 0. Following this coding for two individuals i and j, 
the combination of genotypes of each locus belongs to one of seven groups, 
named A to G (Table 2). The number of loci of each group is designated I A to 
le. We can thus write Tij from n5 =2IA+18 + 2IE +IF and nc = 2(IA + 18 +le+10 

+IE +IF+ le)· 
The parameters n,,s (r ~ s) are defined as the number of alleles present r 

times in one individual and s times in the other. Each of the groups A to G 
contributes to these parameters. For example, for a locus with a1 alleles, a 

Table 2. The seven possible combinations of genotypes of two diploid individuals 

Individual i 
Individualj 

A 

20 .. 
20 .. 

B 

200 .. 
. 110 .. 

c 

200 .. 
020 .. 

D 

2000 .. 
0110 .. 

E 

110 .. 
110 .. 

F 

110 .. 
101.. 

G 

1100 .. 
0011 .. 
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pair of group D participates one time at n2,()l two times at n1,0, and a1 - 3 
times at n0,0• 

The numbers I A to JG can be expressed from these parameters nr,s' from 
which we can write Tij as the ratio of n5 = 2n2,2 + n2,1 + n1,1 and n, = (2n2,2 + n2,1 
+ nl,i) + (n2,1 + 2n2,o + nl,o)/2. 

In the expression of Tij' therefore, a generalization of 54, the Dice index, 
can be recognized. The number of agreements is effectively 1 for the genotypes 
contributing ta n2,1 and n1,1 and 2 for those contributing to n2,2. Similarly, the 
disagreements arel for n2,1 and n1,0 and 2 for n2,0. It can be noted that for 
haploid species, some microorganisms, for example, we can directly find the 
Dice index. 

The Dice index belongs to the family of indexes that do not take into 
account the information carried by double absences. This point of view is 
logical since the number of double absences does not carry information on 
the proximity of individuals and depends only on the number of alleles of 
the loci. 

CODOMINANT MARKERS CODED IN BANDS 

For markers of the RFLP type or the isozymes, it is sometimes impossible to 
identify alleles belonging to the same locus and there is only coding in bands. 
For a diploid species, the presence of a band, coded l, can thus correspond 
to a homozygous locus, which must be coded 2, or to one of the alleles of a 
heterozygous locus, normally coded 1. The different groups of genotypes 
defined for multiple allele markers are not identifiable and the phenotype 
observed differs from the real genotype (Table 3). 

Table 3. The seven possible combinations of genotypes and prenotypes observed for 
codominant markers 

A B c D E F G 

Genotypei 20 .. 200 .. 200 .. 2000. 110 .. 110 .. 1100 .. 
Genotypej 20 .. 110 .. 020 .. 0110. 110 .. 101.. 0011 .. 

Phenotypei 10 .. 100 .. 100 .. 1000. 110 .. 110 .. 1100 .. 
Phenotypej 10 .. 110 .. 010 .. 0110. 110 .. 101.. 0011 .. 

As in the preceding case, the information of double absences is not 
relevant and, by analogy with the Dice index, one can retain, as a measure of 
resemblance, an index of the group Si.= n1,/(n1,1 + Pn1,0). The value of p is 
chosen such that, under certain hypofueses, Sij more closely approaches T;·· 

For an autogamous diploid species that will be homozygous for all the 
loci, Sij = Tij for p = 1h; Sij is thus directly the. Dice index. 

For a given species, a value of t, the rate of average heterozygosity, is 
generally known. Considering that this value may be applied at each locus, 
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we can define the value of p, function oft, that annuls Sij- Tij" The expression 
of this difference is complex and the relations between p and t have been 
researched numerically for different distributions of allele number per locus, 
the maximum being fixed at 7 (Fig. 6). The distributions I, II and IV correspond 
to extreme distributions, and the distribution III reproduces a distribution 
observed on hevea (M. Seguin, personal communication). 

Fig. 6. Values of the index p of the dissimilarity D = a/[a + p(c + d)] such that D;- is equal to the 
genetic dissimilarity Tii calculated from the complete genetic information, as a fun'ction of rates of 
heterozygosity t and for various distributions of number of alleles: 
I : all the loci have 2 alleles; 
II : loci with 2 or 3 alleles in proportions 0.9 and 0.1; 
ill : loci with 2 to 7 alleles in proportions 0.27, 0.32, 0.19, 0.11, 0.07 and 0.03; 
IV : all the loci have 7 alleles. 

For loci with a small number of alleles (I or II), the genetic similarity is 
approached, for low heterozygosity, only for values of p close to 1. 

For a more realistic distribution as distribution III, one can propose to fix 
the value of pat 0.5 fort::; 0.1, at 0.6 for 0.1 < t $ 0.3, and at 0.7 fort> 0.3. 

The order of magnitude of the difference has been evaluated by simulation 
for different rates of heterozygosity and a series of values of b between 1h and 
1, from a population of 40 individuals described by 200 loci. The deviation 
S ii- Tij is composed of a systematic bias, without consequence on the methods 
ot analysis, and of a true error that is the only relevant point here. This error 
is expressed by the half-deviation between the lowest and the highest of the 
values observed in the simulations; it is expressed as a percentage of the mean 
genetic similarity. For a type III distribution, this maximal error is of the order 
of 3% for t close to 0.2, but it reaches 5% for highly heterozygous species. 
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It can be demonstrated, moreover, that this error depends mostly on t 
and very little on p. In practice, we can most often retain p = 0.5, corresponding 
to the Dice index. 

DOMINANT MARKERS CODED IN BANDS 

Dominant markers, RAPD or AFLP, can be considered loci with two alleles, 
since a single allele can be located, the other being a null allele that is not 
materialized on the gel. These markers are said to be dominant, because it is 
impossible to know the number of copies of an allele for a particular locus 
and thus to distinguish the homozygotes from heterozygotes. 

Among the types A to G defined previously for a diploid species, only A, 
B, C and E exist, since the loci have only two alleles. The two alleles do not 
play an identical role. Genotypes A and B must be subdivided according to 
the phenotypes, distinguishing the located allele from the null allele. The 
impossibility of coding into alleles leads, as for RFLP markers, to a phenotype 
designated theoretical in Table 4. As the null allele, noted by a point, cannot 
be located, only one of these allele states is thus readable, from which we get 
the phenotype that is actually read. 

Table 4. Genotypes, theoretical phenotypes, and phenotypes observed for dominant markers 

Al A2 81 82 c D 

Genotypei 20 02 20 02 20 11 
Genotypej 20 02 11 11 02 11 
Theoretical phenotype i 10 0. 10 0. 10 1. 
Theoretical phenotype j 10 0. 1. 1. 0. 1. 
Read phenotype i 1 0 1 0 1 1 
Read phenotype j 1 0 1 1 0 1 

The number L of loci is the number P of different bands observed in the 
population. We must note immediately that n0_0, the number of double 
absences, here has a clear meaning. It corresponds to the number of 
homozygous loci for the null allele in the two individuals and carries as 
much information as the number of double presences. It will be logical to 
retain an index symmetrical in 0 and 1. The denominator of the genetic 
similarity Tii is equal, in this particular case, to P. This value leads us to retain 
the Sokal and Michener index, here expressed by Sij = (nl,1 + n0,0)/P. 

The difference Sij- Tii' which measures the error of estimation of genetic 
similarity, is expressed snnply by (181 - 182)/P. This difference is nil if the 
frequencies of genotypes (2,0) and (0,2) are equal, that is, if the frequencies of 
the two alleles are identical for all the loci; it remains low if they tend to be 
identical, on average, for all the loci. On the other hand, if the species is 
highly homozygous, the proportions of genotypes B are low and 181 - 182 
remains low. 
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For more heterozygous species, this difference can be high since the 
genotypes B can represent up to 50% of the population. As before, numerical 
simulations are used to ' estimate the order of magnitude for different levels 
of heterozygosity and for different proportions of the two alleles of a locus. 
The true error is, as before, the demi-amplitude of extremes observed related 
to the mean genetic similarity. It increases with heterozygosity and reaches 
13% for t = 0.5 and no all~le deficit, goes beyond 18% if the non-identifiable 
alleles are in a majority, and falls to 10% in the opposite case. In any case, the 
imprecision induced by the loss of genetic information is clearly greater than 
for the codominant markers. 

In conclusion, it must be emphasized that the informative content of 
markers must determine the choice of an index of similarity, a criterion that 
is often missing in most publications in this field. 

METHODS OF FACTORIAL ANALYSIS 

Methods of factorial analysis aim to discover the strongest structures in 
populations that are being studied and to eliminate the occasional peculiarities 
that hamper the general perception of phenomena. They can therefore be 
very useful in a study of the diversity of a species or a population. 

The aim of these methods is to produce a geometric representation of 
measures of differences between units. Such a representation allows us to 
manipulate specifically the notion of diversity. We thus get a hierarchical 
composition of the diversity, which allows us to distinguish the basic 
tendencies of various characteristics. 

The use of these techniques requires a knowledge of the principles they 
are based on and the conventions they use. After a general presentation of 
factorial analysis emphasizing its conventional aspects, we will see how it 
integrates specially in three widely known applications: principal coordinates 
analysis (PCoA), principal components analysis (PCA), and multiple 
correspondence analysis (MCA). 

Then we will discuss the treatment of multiple tables, a problem found 
particularly in the study of a population described by several types of markers. 
When there is information coming from different points of view about the 
individuals, we can use multiple factorial analysis (MFA) to reveal the major 
characters, which are manifested in a consensual manner, and those that on 
the other hand are specific to one type of measure. 

Factorial Analysis 

CLOUD AND POINTS OF DISPERSAL 

If the distance chosen to measure the differences between the units studied is 
Euclidean, the group of units can be represented in the form of a cloud of 
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points in a vast space. In this space one can mark out a point B, called the 
mean point, or barycentre, which is defined as being as close as possible to 
all the points of the cloud. It corresponds to a neutral 'mean type' of which 
each real unit differs by its own characteristics. 

In these conditions, the total diversity of the population is represented 
by the dispersal of the cloud around B. Factorial analysis quantifies this 
dispersal by the inertia of the cloud in relation to B, that is, by the sum of 
squares of distances from each point to B. 

PRINCIPAL AXES OF INERTIA AND COORDINATES OF INDIVIDUALS 

In general, the space in which the cloud is found is a space of high dimension. 
Practically, this means that in leaving Bone can go in a multitude of directions. 
In other words, there are many ways for an individual to be distinguished 
from the mean type and all the units observed are different from it, each in 
its own way. The aim of factorial analysis is to bring any peculiarity back 
approximately to the composition of a small number of directions that are 
very commonly used and independent from each other. 

To determine the 'frequency of use' of a direction U, one constructs a 
criterion by summing for all the individuals a value that is large enough so 
that the angle that U makes with the specific direction of the individual is 
acute and so that the individual is at a great distance from the mean point B. 
This criterion is called the inertia of the cloud along U. The direction that 
maximizes this criterion is called the principal axis of the inertia of the cloud. 
Factorial analysis successively produces other axes by choosing for each the 
direction that maximizes the criterion of inertia among the orthogonal 
directions of the axes already identified. The orthogonality of axes ensures 
the independence of variations summarized by them. 

The result of this process is a system of independent axes successively 
explaining the maximum of variation. The coordinates of each unit can be 
calculated on these axes and they can thus be placed in the orthogonal system. 
The set of coordinates of all the individuals on an axis is called a factor. 

From the factorial coordinates, the total dispersal of the population can 
be reconstituted. However, and this is the essential advantage of factorial 
analysis, the selection of just the primary factors will enable generally the 
reconstruction of a large part of the total dispersal. Several relatively empirical 
criteria have been proposed to determine the number of axes to be conserved 
(Saporta, 1990). However, it is advisable to remain circumspect and the choice 
of axes must be reasoned case by case. 

In the absence of other information, the coordinates of individuals on 
the axes have little significance. For a factorial analysis to be interpretable, 
there must be an 'external' source of information available that one can link 
to other factorials. This external information may not be explicit and may 
appear only when one observes that such an axis resembles or, on the contrary, 
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opposes certain recognizable individuals. Most often, however, an axis will 
be interpreted through observation that it is linked to variables measured on 
the individuals, and that they have participated or not participated in the 
calculation of the distance matrix. 

Only when an axis is interpreted and when the dispersed part attached 
to it is comprehensible do we consider that there is a factor that must be 
taken again into account in the elaboration of the diversity. 

GRAPHIC REPRESENTATIONS 

To provide a visual representation of diversity, but also to facilitate the 
interpretation of axes, the methods of factorial . analysis propose graphic 
representations of individuals and, if necessary, of variables. The graphs are 
critical inputs of these methods. They allow us to see, literally, the oppositions, 
groupings, and trends that are difficult to perceive from enumerated statistics. 
However, each type of graph must be read according to particular rules, and 
it is advisable to master those rules to avoid any chance misreading. 

Classic Methods of Factorial Analysis 

In practice, factorial analysis of the kind discussed here is only one step in a 
process that starts with a table of data, operates possible coding, calculates 
distances if necessary, and finds factorial axes produced with interpretative 
aids adapted to the nature of the data. It is the entire process that forms a 
'method' of factorial analysis. According to the type of data available, the 
most commonly used methods are: PCoA for a table of distances, PCA for a 
table of quantitative variables, and MCA for a table of qualitative variables. 

PRINCIPAL COORDINATES ANALYSIS 

Principal coordinates analysis is used to treat a matrix of distances calculated 
with an original index, chosen in a manner adapted to its own data. It is, 
however, necessary that the distance obtained be a Euclidean distance or a 
distance rendered Euclidean by transformation. 

In this case, two individuals i and j can be represented by two points ei 
and ei of a space of unknown dimension K such that the square of the distance 
dii can be written as follows: d/ = (ei - e/(ei - ei). 

In terms of calculation, it is demonstrated that the successive axes of the 
factorial analysis and the inertia of the cloud on each axis correspond to 
vectors and values of the matrix W of scalar products between elements. If 
the origin of the coordinates is placed at the midpoint of the cloud, the scalar 
products wij = <ei; e? are entirely determined by the dii according the formula 
of Torgerson: w .. = - (d..2 - d. 2 - d .2 + d2)/2. 

The diagon~lizatio~ of this m~trix Wallows extraction of the eigenvectors 
and eigenvalues associated with them. 
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The number of eigenvectors associated with a non-null eigenvalue is the 
dimension K of the space containing a cloud of points. 

The PCoA is the simplest use of factorial analysis. In these conditions, 
the only aid to interpretation available is the graph of individuals on any 
choice of two factorial axes. · 

PRINCIPAL COMPONENTS ANALYSIS 

Principal components analysis treats quantitative variables and imposes a 
Euclidean distance between individuals. The Euclidean distances that can 
be calculated differ only in the weight assigned to the variables. The most 
common weightage system consists of bringing all the variables to the same 
scale and weighing them by the inverse of their standard deviation. The PCA 
is thus said to be normal, or centred-reduced. 

As with PCoA, the coordinates of individuals on the principal components 
can be calculated from the matrix of scalar products. This can be obtained 
immediately from a table of centred data. 

The interpretation of axes provided by a PCA is more rich because 
correlations can be calculated between the factors and the variables of the 
table. From examination of these correlations for each axis, we can reveal the 
variable or variables most closely linked to the axis. The bundle of variables 
that vary conjointly can thus be revealed; the conjoint variation allows a 
distinct discrimination of individuals. 

MULTIPLE CORRESPONDENCE ANALYSIS 

Multiple correspondence analysis (MCA) allows the study of individuals 
described by qualitative variables with modalities. This method· calculates 
distances between individuals by the x2 distance on the binary table (see 
above). That is, two individuals are distant from each other to the extent that 
they present numerous disagreements and that their disagreements cause 
one or another to adopt rare modalities. 

This method is also known as multiple correspondence analysis (MCA), 
correspondence analysis on a binary table (CA on BT), or simply correspon­
dence analysis (CA). 

The interpretation of axes provided by fadorial analysis of this matrix of 
distances is deduced from relations that they have with three types of objects: 
individuals, variables, and modalities. The individuals provide the same 
interpretations as in other methods of factorial analysis. 

As with PCA, one can evaluate the link between the variables of the 
table and each axis. For a qualitative variable, this link is increased by the 
ratio TJ2, which is equal to the part of the total inertia of the axis reconstituted 
by the sum of squares of the intermodality deviations. One factor can thus be 
perceived as a numerical synthesis of a certain number of variables that vary 
conjointly. 
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A qualitative variable is a more complex object than a quantitative variable 
and the diversity that it induces manifests itself on as many axes as the variable 
has modalities. A more refined interpretation of axes and of liaisons between 
variables must thus be looked for at the level of modalities. However, the 
choice of the x2 distance determines that the considerable contribution of a 
modality to an axis can only be due to the rarity of this modality and thus to 
the eccentricity of the small number of individuals that possess it. When this 
is not the case, one axis reveals a set of modalities in mutual association, that 
is, present or absent simultaneously in a large number of individuals. 

Regarding graphic representations, the x2 distance means that when the 
individuals and the modalities are plotted on a single graph, an individual is 
close to modalities that it possesses and a modality is close to the individuals 
that possess it. 

Treatment of Multiple Tables and Multiple Factorial Analysis 

CONJOINT ANALYSIS OF SEVERAL TABLES 

Faced with data of various kinds, we may wish to combine the information 
contributed by the different tables in such a way as to clarify the finer 
structures in the population. 

An organization of individuals that appears during the analysis of a 
certain table and that is clearly due to variations of certain important 
characters of this table may sometimes manifest itself only during analysis 
of another type of data. One approach could be to make a conjoint analysis 
of a supertable juxtaposing the different data. All the possible oppositions 
can thus be made apparent; those that are common to all the types of data 
and those that, on the contrary, are specific to a given table can be revealed. 

There are, however, two major obstacles to the immediate analysis of 
such a supertable: 

(1) The type of variable-qualitative or quantitative-is not necessarily the 
same for all the tables. It is advisable to analyse the qualitative tables 
beforehand by MCA and the quantitative tables by PCA. 

(2.) All the tables do not have necessarily the same inertia and do not clearly 
express the same organization of the diversity. The most highly structured 
tables may thus influence the results excessively, and the input of the 
more loosely structured tables may go unnoticed. 

A useful result allows us to overcome the first obstacle: it can be 
demonstrated that one can obtain the same factors as those produced by 
MCA by making a PCA, weighted appropriately, of the table formed by the 
indicators of the qualitative variables, that is, of the table coded in a binary 
form. In the case of molecular data, this means that each marker must be 
represented by two columns: one indicating its presence and the :other its 
absence. 
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The second obstacle is overcome by adopting a weighting of tables that 
reduces the influence of tables that are highly structured. For that purpose, 
we must quantify beforehand the part of the total inertia of the table that 
corresponds to its interpretable structure. Such a quantification is relatively 
arbitrary and this is one of the points that distinguishes the different methods 
of analysis of multiple tables. The Statis method (Lavit, 1988) uses as a measure 
the sum of squares of eigenvalues of the separate analysis of the table. The 
MFA (Escofier and Pages, 1993) prefers the largest of these eigenvalues. 
Without going into detail, we can say that the first method can reduce the 
significance of a table when, by chance, the last eigenvalues are high. The 
second may on the other hand give more weight than should be given to a 
table in which the first eigenvalues are not very different from each other. 

MULTIPLE FACTORIAL ANALYSIS 

Multiple factorial analysis is thus a particular PCA, in which all the variables 
in a table are weighted by the inverse of the variance of the principal axis of 
inertia of the separate analysis of the table. 

As does PCA, MFA can be used to locate individuals that resemble each 
other for the set of variables and thus to make a typology of individuals. It 
also enables us to attribute the passage from one class of this typology to 
another to the conjoint variation of some variables. It is these common 
directions of variation that MFA produces as axes of inertia, under the name 
of axes of global analysis. 

However, the organization of data in the form of juxtaposition of tables 
enriches the interpretation of MFA. On the one hand, MFA provides indexes 
for each axis of overall analysis that allow us to determine whether it is due 
only to variables of a single table or whether it is common to several types of 
data. On the other hand, the MFA calculates the correlations between the 
axes of global analysis and the axes that will produce separate analysis of 
each table. When the preceding criterion indicates that a certain axis of the 
global analysis is common to several tables, this allows us to determine at 
what character precisely within each type of measure the common axis is 
linked. 

Finally, from these correlations, we can find out, for a certain axis of a 
separate analysis whose meaning is known, the number of the axis of the 
global analysis to which it essentially contributes. If this global axis is common 
to several tables, that signifies that the partial axis manifests itself in a 
consensual manner. On the other hand, if the global axis is specific, that 
signifies that the partial axis corresponds to a character that is proper to the 
type of observations of separate tables. 

MFA also has properties useful in terms of representation of individuals. 
In particular, it is shown to offer an interesting compromise between the 
quality of representation of clouds corresponding to each separate table and 
the proximity of these partial representations for a single individual. 
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TREE REPRESENTATION OF DISSIMILARITIES 

The principle of any tree representation is to approach as closely as possible 
the dissimilarity o, chosen for its relevance in describing the relationships 
between individuals, by a distanced that can be represented as a tree, that is, 
an ultrametric or an additive tree distance (Barthelemy and Guenoche, 1988). 

To find the exact solution, we must enumerate all the possible tree 
configurations possible for n individuals. For each possible tree structure, 
the edge length of the tree is estimated in terms of least squares. Finally, we 
retain the tree that allows us to minimize the sum of squares of deviations 
between initial dissimilarity and distance reconstituted in the tree. It is shown, 
by recurrence, that the number of different binary trees constructed over n 
individuals is II;= J,n(2i - 5). For n = 10, there are more than 2 x 106 different 
trees and for n = 20 there are more than 2 x 1020• It is thus impossible to 
enumerate all the trees when n goes beyond some tens, even with the most 
powerful computers. 

In such situations, the only possibility is to construct, from reasonable 
heuristics, solutions that will be the best possible but that can never be 
guaranteed to be optimal. Various heuristics have been proposed, permitting 
the construction of algorithms of more or less great complexity, the complexity 
of an algorithm measuring the increase in calculation time when n increases. 
In the scope of this work, we have discussed only the methods of grouping 
that are of sufficiently low complexity to treat some hundreds of individuals. 

The individuals studied are often described by several types of variables 
that cannot be combined in the calculation of a single dissimilarity. Each set 
of variables is thus treated separately and the presence of common structures 
in the different trees is examined. Two methods of constructing synthetic 
trees, consensus trees and the common sub-trees, will be presented. 

Methods of Grouping 

Methods of grouping are iterative methods that proceed by successive 
ascending agglomerations, constructing the tree step by step. Initially, the 
matrix treated has as many elements as individuals in the population studied 
and the tree has a star structure. At each iteration, two elements, individuals 
or groups already formed and defined as neighbours, are joined to form one 
group. They are chosen so that the tree that traces their grouping optimizes a 
fixed criterion. This group becomes a new fictive element that replaces the 
two combined elements; the matrix is updated and thus reduced by one 
unit. The process is reiterated until all the individuals are united in a single 
group. 

The various methods of this type are characterized by different choices 
at three key points of each iteration: the selection of elements to be joined, 
which depends on the definition of 'neighbourhood' used, the updating of 
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the dissimilarity matrix by calculation of a dissimilarity between the group 
formed and the other elements, and the construction of lengths of the two 
edges derived from the two combined elements. 

DEFINITION OF NEIGHBOURHOOD 

The most natural definition of neighbours is the two individuals or groups 
that have the least dissimilarity. The elements i and j are defined as neighbours 
if o{i,j) is the smallest dissimilarity. 

This criterion allows us to find the tree solution in a theoretical case in 
which the initial distance is already an ultrametric. But it does not necessarily 
allow us to find the right structure if the initial dissimilarity is an additive 
tree distance. In the example in Fig. 2, on just four points, we can imagine 
that the distance d(i,k) = ai + ac + ak is the smallest of distances even though i 
and k are in two pairs opposed by the central edge. This criterion necessarily 
groups i and k and does not allow us to find the true tree. For that, other 
criteria must be used that take all of the distances into account to judge a 
neighbourhood. 

In the context of genetic diversity, Saitou and Nei (1987) proposed a 
criterion of neighbourhood based on the principle of parsimony, which is at 
the basis of the phylogenetic approach. The objective is to create a tree that 
will be of minimal total length. It can be considered that an edge represents a 
number of mutational events and, by virtue of the basic principle that 
evolution proceeds always by the simplest genetic modification, the number 
of events, and thus the total length, must be minimized. These considerations 
lead to a definition of relative neighbourhood, defined by minimizing a 
criterion Q(i,j), function of o(i,j) and of the average of dissimilarities of i and 
j at the n - 2 other elements k: 

Q(i,j) = o(i,j) - (Lk [o(i,k) + o(j,k)])/(n - 2) 

It can be demonstrated that this criterion has properties of optimality in terms 
of least squares and that its domain of application goes beyond the scope of 
the phylogenetic reconstruction. It can be interpreted, very generally, as a 
weighting of the dissimilarity between two individuals by their dissimilarities 
to other individuals. Two related individuals that differ considerably from 
other individuals resemble each other more than two related individuals 
that are equally related to other individuals. This attitude is justified in many 
cases and explains the success of the method. 

Sattath and Tversky {1977) adopt a very different approach. They start 
from the characterization of an additive tree distance by the four points 
condition. For any four individuals i, j, k and I, if d(i,j) + d(k,l) is the smallest 
of three sums of distances two by two, then the two largest are equal: d(i,k) + 
d(j,l) = d(i,l) + d(j,k). The initial dissimilarity o is not an additive tree distance 
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but it is always possible to form the sums of dissimilarities two by two. Among 
these three sums, one is the smallest, o{i,j) + o(k,l), for example; the pairs of 
points (i,j) and (k,l) are thus considered good candidates to be neighbours. 
They are assigned a score of 1, while other pairs of points, (i,k), (j,l), (i,l) and 
(j,k), are attributed a null score. All the quadruplets of points that can be 
formed on the n points are scanned and the individuals of the pair that has 
the largest total score are considered neighbours. This definition of topological 
neighbourhood is ordinal in nature, since only the order of the three sums is 
important, and not directly the dissimilarity values that constitute them. It 
seems particularly appropriate when the dissimilarity values are somewhat 
marred by errors. 

UPDATING DISSIMILARITIES 

When two groups, each possibly composed of a single individual, are 
combined to form a new group, it is necessary to define a dissimilarity 
between the new fictive element created and the other elements present at 
this iteration. Given i and j the groups combined to form a new element s, ci 
and ci the numbers of these groups, and k another element, the most natural 
definition of o(s,k) is the arithmetic mean of dissimilarities between k and the 
individuals constituting i and j: o(s,k) = [cio(i,k) + c.o(j,k)]/(ci +c.). It corresponds 
to an unweighted criterion since all the individhals play th~ same role. 

Often, an arithmetic mean is used that is said to be weighted, in the 
sense that a different weight must be attributed to individuals of the groups 
in order that the mean does not depend on the numbers of the groups and is 
written: o(s,k) = [o{i,k) + o(j,k)]/2. The choice between these two criteria 
depends on the nature of the population studied. If the whole arises from a 
real process of sampling on a given structure of diversity, then the number of 
individuals in each element has a significance and must be taken into account 
in the calculation of dissimilarity. If the whole is only a circumstantial group 
of units that is not representative, the number of each group is only the result 
of chance and is not to be considered in the calculation of diversity. 

In the case of adjustment to an additive distance, the formula o(s,k) = 
[o(i,k) + 8(j,k) - o{i,j)]/2 is used, or its weighted equivalent. In the reconstruc­
tion of edges, this formula can be used to find the correct edge lengths when 
the initial tree is already an additive distance. This modification has no 
influence on the choice of subsequent steps. 

It has sometimes been proposed, for adjustment to an ultrametric, that 
criteria called simple link and complete link be used that correspond 
respectively to o(s,k) = min[o{i,k), o(j,k)] and o(s,k) = max[o(i,k), o(j,k)]. Except 
in very particular cases, it is difficult to justify these criteria in problems of 
diversity. If the simple link has been studied a great deal, it is essentially 
because it induces particular mathematical properties in the ultrametric 
produced. 
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RECONSTRUCTION OF EDGES 

The elements i and j are combined to form the node s of the tree, and edge 
lengths Z(i,s) and Z(j,s) remain to be fixed .. The dissimilarity o(i,j) can simply 
be divided equally between the two edges: l(i,s) = Z(j,s) = o(i,j)/2. This mode 
of calculation corresponds to an adjustment of the initial dissimilarity by an 
ultrametric. 

If one does not impose an ultrametric condition, one accepts that the two 
edges can have different lengths for, on average, the dissimilarities of n - 2 
elements k to i and to j to be represented as well as possible. The difference of 
edge lengths, designated e, is the sum on all the elements k of [o(i,k) - o(j,k)]/ 
(n - 2). From this we get the formulae to calculate the edge lengths Z(i,s) = 
[o(i,j) + e]/2 and Z(j,s) = [o(i,j) - e]/2. This mode of calculation corresponds to 
the adjustment of the initial dissimilarity by an additive tree distance. 

These formulae of edge reconstruction do not guarantee that the 
estimations will be the best. Fortunately, the edge lengths are not involved in 
the subsequent steps. It is thus preferable to reestimate them afterwards, 
when the tree topology has been established. We know how to estimate the 
length of each edge of a given tree topology overall, in the sense of least 
squares. For this, we express the distance in the tree between two individuals 
i and j as the sum of edge lengths belonging on the way from i to j and we 
expect that this distance will be the closest, in the sense of least squares, to 
the initial dissimilarity. We thus resolve a system of n(n - 1)/2 equations 
with as many unknowns as edges. This reestimation will cause loss of the 
ultrametric property. 

SOME KNOWN ALGORITHMS 

The most widely known algorithms correspond to certain compatible 
combinations among the different possible combinations of modes of 
definition of neighbourhood, various formulae for updating dissimilarities, 
and modes of estimating the edge lengths. 

The set of methods often described as hierarchical clustering correspond 
to the definition of neighbourhood according to the minimal dissimilarity, 
with an adjustment to an ultrametric, and various formulae are proposed for 
updating. Among these, formulae of type average or weighted average are 
the most commonly used and the corresponding methods are frequently 

· referred to as UPGMA and WPGMA, for unweighted or weighted pair group 
method using average. 

The N}tree method (for neighbour-joining) proposed by Saitou and Nei 
(1987) is often used in genetic diversity. It uses the criterion of relative 
neighbourhood, the criterion of updating the dissimilarities is that of the 
unweighted average, and the dissimilarities are adjusted to an additive tree 
distance. The calculation complexity is of the order of n3 and allows us to 
treat matrices of some hundreds of individuals. Several studies by simulation 
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have shown the effectiveness of this method in finding the true tree. Gascuel 
(1997) proposes a version, UNJ (unweighted neighbour-joining), which uses 
a criterion of weighted average. The choice between these two methods 
depends, as has already been mentioned, on the sampling process. 

Sattath and Tversky (1977) propose the Addtree algorithm (or method 
of scores), which uses the average as a criterion of aggregation and makes an 
adjustment to an additive tree distance. The notion of neighbourhood is that 
of topological neighbourhood. The complexity of n4 is higher than that of 
NJtree. This method, which also has a proven effectiveness, can be preferred 
for its topological point of view. 

Consensus Trees and Common Sub-trees 

The same set of individuals is often described by several types of markers of 
diversity. To each type of marker corresponds a matrix of dissimilarity and 
an adjustment to a tree. Each type of marker contributes different information; 
the trees produced are thus different. However, one can hope to build from 
them a strong structure, a consensus tree, which will be common to different 
trees. 

The problem of comparison of trees is also found in the resampling 
approaches (bootstrap or jackknife). The object of these approaches is to test 
the stability of tree representations obtained. The principle is to compare the 
trees established from several random samples in the set of markers observed 
(Felsenstein, 1985). If the markers are numerous and of equivalent informative 
content, molecular markers, for example, each of these samples is recorded 
to give a single image of diversity. If all the trees obtained are closely related, 
we conclude the stability of the structure revealed. On the other hand, if the 
different random samples of markers give very different trees, then the 
structure obtained must be regarded with the greatest caution. A measure of 
dispersion around a synthetic consensus tree quantifies the deviations 
between these trees. 

Considering that the principal information on diversity involves much 
more of the tree structure than the edge length, the methods presented here 
construct synthetic trees in terms of structure, without the edge lengths being 
taken into account. 

CONSENSUS TREES 

Various methods of consensus have been proposed on rooted trees. A direct 
generalization to non-rooted trees does not pose a major problem. The strict 
consensus only retains the edges that are present in · all the trees compared. 
Since this method may be considered too severe, the majority rule has been 
proposed, which retains the edges present in more than 50% of the trees. If 
one compares two trees only, the two types of consensus are equivalent. 
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A measure of the difference between two trees can be defined as the sum 
of differences of each to their consensus tree. The consensus tree is always 
simpler in organization than the initial trees. This organization is quantified 
by an index of complexity v; the dissimilarity betWeen two trees Hand H', of 
consensus H,, is thus: 

d(H,H') = v(H) + v(H') - 2v(H,). 

Various definitions of complexity can be considered. The most common 
way is to measure the complexity of a tree is by its edge number. For the 
binary trees that have only nodes of the third degree, the complexity of H 
and H' will be 2n - 3; the complexity of H, is the sum of the number of its 
external edges, n, and of the number of its internal edges, I,, from which 
d(H,H') = 2n - 6 - 21,. 

The distance, called the edge distance, thus varies according to the number 
of internal edges conserved in the consensus tree. If I, is 0, the consensus is a 
star, and the trees compared have no common structure. It is the opposite if 
I, is n - 3; the initial trees are identical. This distance is often standardized by 
2n - 6 to keep the variation between 0 and 1. 

The value of a distance can only be interpreted by reference to the value 
that will be obtained on the trees drawn randomly, thus without any common 
structure other than a random one. The distribution of this index, for random 
trees, is known only asymptotically, that is, when the number of individuals 
tends towards infinity. We can, however, estimate these distributions for finite 
numbers by simulation and thus construct an approximate statistical test. 
Table 5 gives the threshold values for different values of n and different 
thresholds of probability. For example, for a tree of 40 individuals, there is 
only a 5% chance that trees of distance less than 0.973 will be constructed. 
This distance seems hardly discriminating and the random hypothesis is often 
refused even if the trees have only a very small number of internal edges in 
common. 

The edge distance carries the same judgement on all the edges no matter 
what their position on the tree. The complexity of a tree depends only on its 
edge number independent of its internal organization. An intuitive idea will 

Table 5. Edge distance between trees. Threshold values for different levels of probability. 
Empirical test established from simulation of 20,000 pairs of random trees with n leaves 

Probability(%) 

n 1 5 10 20 

20 0.882 0.941 0.941 1 
40 0.973 0.973 0.973 1 
60 0.982 0.982 0.982 1 
80 0.987 0.987 0.987 1 

100 0.990 0.990 0.990 1 
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be to give a different weight to edges according to their aptitude to 'structure' 
the tree. For example, an external edge that involves a single element is less 
structuring, and an edge that separates the group into two sub-groups of 
number n/2 is more structuring. One associates at an edge a weight that is 
the product of numbers of each of the sub-groups defined by this edge. The 
complexity is the sum of these weights on all the edges. A distance known as 
bipartition distance is thus expressed, as previously, as a function of the 
complexity of trees and of their strict consensus. The maximum reached is 
not simply expressed but can be calculated from n; the distance is standardized 
by this maximum. As for the edge distance, the distribution under a random 
model is not known but can be approached by simulation. Table 6 gives the 

n 

20 
40 
60 
80 

100 

Table 6. Bipartition distance between trees. Threshold values for different levels of 
probability. Empirical test established from simulation of 20,000 pairs of random trees 

with n leaves 

Probability(%) 

1 5 10 20 

0.727 0.753 0.766 0.782 
0.580 0.600 0.611 0.626 
0.492 0.511 0.522 0.537 
0.435 0.453 0.464 0.477 
0.394 0.412 0.421 0.434 

threshold values for different probabilities of an approximate statistical test. 
It is clearly more discriminating. 

COMMON SUB-TREES 

It is not unusual, in certain applications, to obtain consensus trees that look 
like a star, thus without marked structure, while direct examination of the 
initial trees reveals evident structural analogies. 

The consensus tree makes the hypothesis that all the individuals are 
correctly represented; the exchange of an individual from one group to another 
is a strong indication that there is no real separation of the groups. For several 
applications this hypothesis is not entirely acceptable. For example, it has 
been demonstrated that the dissimilarities estimated from molecular markers 
can be compromised by a certain error. If the population studied combines 
units that are genetically closely related, on the infraspecific scale, for example, 
the imprecision of the measure of dissimilarities may suffice to explain the 
erratic character of certain units. 

Considering that just a few individuals may mask a common structure, 
it is useful to try to identify these 'fluctuating' individuals rather than allow 
them to have the same weight as others in the determination of the common 
structure. The research of structures common to several trees thus needs to 
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be reformulated. The problem becomes that of determining the smallest 
subgroup that needs to be pruned in each of these trees to obtain identical 
trees or, inversely, the largest subgroup of individuals having the same 
structure in all the trees. These individuals form the common sub-tree. In 
Fig. 7, this common sub-tree and the consensus tree are compared on a simple 
example. 

4 2 8 

9 5 4 

2 6 3 
7 

7 
8 T1 9 6 T2 

>~' 2 7 A 

Fig. 7. Consensus tree (C) and common sub-tree (A) of trees T1 and T2. 

This approach is much less widespread than the consensus approach 
and has been the subject of very few studies. The simple statement of the 
problem masks a relatively complex algorithmic problem. Kubicka et al. (1995) 
published the basis of an algorithm that gives an exact solution while retaining 
a sufficiently low complexity to be used in practice. The algorithm relies on 
the enumeration of all the solutions possible while reducing complexity by 
limiting the depth of exploration of the branches on a stop criterion. 

The order o of common sub-tree, that is, the number of individuals 
conserved, can be considered as a measure of the resemblance between trees. 
The maximum order is n, and it is obtained for two identical trees. On the 
other hand, the minimal value of the order is 3, since it has only a single 
possible typology of three distinct points, and it is thus common to two trees. 
From this arises a definition of dissimilarity between trees D = n - o, which 
one can standardize as n - 3 to keep the variations between 0 and 1. The 
practical use of this criterion requires knowledge of the distribution of o under 
the hypothesis of independence of trees. This distribution can be approached 
by simulation and has been calculated for binary trees of 20 to 100 leaves 
(Table 7). It can be used to fix a rule of interpretation. By fixing a threshold of 
5%, for example, it can be considered that chance gives less than 5 out of 100 
trees of order superior or equal to 10, 13, 16, 18 and 19 when n varies from 20 
to 100 by steps of 20. 
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Table 7. Distribution of number of leaves of common sub-trees of 1000 pairs of random 
binary trees with 20, 40, 60, 80 and 100 leaves 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 Mean 

20 1 40 50 9 7.67 
40 5 34 43 17 0 1 10.76 
60 2 30 48 17 3 12.89 
80 3 25 39 24 7 2 15.13 

100 2 19 36 28 11 4 16.39 

It is necessary to emphasize that the consensus tree and common sub­
tree do not have the same point of view on data. Each is justified according 
to the interpretation that one can make on the shift of individuals in the 
initial trees. If it is a matter of accidental exchange of some individuals within 
a strong common structure, then the common sub-tree appears more adapted. 
If the exchange really expresses fundamental differences of structure, then 
the consensus tree is logically more adapted. In practice it is rarely possible 
to opt boldly for one of these two hypotheses and the two approaches can be 
implemented in a complementary manner. 

CONCLUSION 

The dynamism of the field of numerical taxonomy must be emphasized. It 
was considered, with the work of Sneath and Sokal (1973), that everything, 
or almost everything, had been said on the subject. Recent theoretical 
developments, the considerable increase in information technology, and the 
use of new types of markers have again thrown open this discipline, which is 
presently highly active at the interface between mathematics and biology. 

On reading this chapter, the reader will understand the necessarily joint 
intervention of these two fields. The question that naturally arises from such 
a presentation-are some methods better than others?-does not have a real 
meaning in this field. There is no universal mathematical solution that is 
valid in all circumstances. Among the various approaches available we can 
choose the most relevant only on the basis of our knowledge of the plant 
species studied, its level of diversity, mode of reproduction, heterozygosity, 
and so on, the nature of the sample analysed, and the characteristics of the 
markers used. 
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