Agritrop
Accueil

Stochastic 3D tree simulation using substructure instancing

Kang Meng Zhen, De Reffye Philippe, Barczi Jean-François, Hu Bao-Gang, Houllier François. 2003. Stochastic 3D tree simulation using substructure instancing. In : Plant growth modeling and applications. Proceedings PMA03 : The First International symposium on plant growth modeling, simulation, visualization and their applications, Beijing, China, October 13-16, 2003. Hu Bao-Gang (ed.), Jaeger Marc (ed.). Institut d'automatique-LIAMA, Chinese Agriculture University. Pékin : Tsinghua University Press, 154-168. ISBN 7-302-07140-3 International Symposium on Plant Growth Modeling, Simulation, Visualization and their Applications (PMA03). 1, Pékin, Chine, 13 Octobre 2003/16 Octobre 2003.

Communication avec actes
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
ID_520429.pdf

Télécharger (8MB)

Résumé : Tree growth is simulated using a stochastic model of organogenesis that is faithful to botanical knowledge. This model is based on the concept of bud "physiological age", on the statistical description of the transition from one physiological age to another as well as of bud death, bud growth and branching processes. In order to enhance simulation efficiency, a recurrent algorithm based on stochastic substructure instancing is proposed. The tree is hierarchically decomposed into substructures that are classified according to their physiological age, and a library of random substructure instances is constructed: the recurrent simulation starts with the simplest peripheral substructures, which are also the physiologically oldest; these substructures are then progressively assembled into more complex substructures, until the tree is completely simulated. When the size of the library of substructure instances is small, the time needed to build a single stochastic tree is much shorter than for a usual tree simulation that operates on a bud-by-bud basis. in computing a group of trees, the speed gain is even much greater, because the library of substructure instances is built for the first tree, and then is reused for computing subsequent trees. A preliminary sensitivity analysis is carried out according to the size of the library: when the library is large, the simulated distribution of the number of organs fits well with the theoretical mean and variance; the algorithm can thus be tuned in order to obtain accurate predictions. On the other hand, a small library (e.g., with only 2 or 3 instances for each substructure class) is sufficient for generating visually realistic trees. A few examples illustrate the high performance of this algorithm which paves the way for the fast simulation of large forest scenes.

Mots-clés Agrovoc : arbre, anatomie végétale, modèle végétal, modèle mathématique, simulation, croissance, méthode statistique, port de la plante, application des ordinateurs, ramification

Mots-clés complémentaires : Architecture des arbres, Croissance des plantes

Classification Agris : U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement

Auteurs et affiliations

  • Kang Meng Zhen, Institute of Automation (CHN)
  • De Reffye Philippe, CIRAD-AMIS-AMAP (FRA)
  • Barczi Jean-François, CIRAD-AMIS-AMAP (CHN)
  • Hu Bao-Gang, Institut d'automatique (CHN)
  • Houllier François, CIRAD-AMIS-AMAP (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/520429/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-01-28 ]