COTTON PRODUCTION FOR THE NEW MILLENNIUM
9 - 13 MARCH 2003 • CAPE TOWN, RSA
Cataloging in Publication Entry

World Cotton Research Conference (3rd: 2003: Cape Town, South Africa)

Chief editor: A. Swanepoel

1. Cotton – Research – Conference
I. Swanepoel, A. (Annette)

Publisher: Agricultural Research Council - Institute for Industrial Crops
Layout and design: D.Comm
Print: D.Comm

In preparing the proceedings of the World Cotton Research Conference-3, the editors have made a good faith effort to avoid any errors, omissions or other editing mistakes in the process of converting presentations and papers into these proceedings. However, the editors cannot ensure against all such errors.
ORGANISING COMMITTEE

International organizing committee

Dr Terry P Townsend (Chairman) Executive Director of the International Cotton Advisory Committee
Dr Jean-Philippe Deguine Deputy Director, CIRAD-CA, France
Peter Griffée Plant Production and Protection Division, FAO, Italy
Dr Francisco Davila-Ricciardi President, CONALGODON, Columbia
Dr Andrew Jordan Technical Director, National Cotton Council of America, USA
Dr Joe CB Kabilssa General Manager, Tanzanian Cotton Lint and Seed Board, Tanzania
Dr Abdusattor Abdurkarimov Director General, Institute of Genetics & Plant Exp. Biology, Uzbekistan
Mr Ralph Schulze (Chairman WCRC-1) Executive Director, Cotton Research & Development Corporation, Australia
Dr Kiratso Kosmldou-Dlmrtropoulou (Chairman WCRC-2) Director, Hellenic Cotton Board, Greece
Dr Deon Joubert (Chairman WCRC-3) Director, ARC Institute for Industrial Crops, South Africa

National organizing committee

Chairman Dr Deon Joubert, Director ARC Institute for Industrial Crops
Secretary Ms Jeannie van Biljon, Snr Researcher, ARC Institute for Industrial Crops
Members Mr Hennie Bruwer, CEO Cotton SA
 Mr Hein Schrader, Quality Control Cotton SA
 Mr Chris Nolte, Clark Cotton
SPONSORS

ABSA
Agricultural Research Council
CIRAD-CA
Clark Cotton
Cotton SA
CTA
D&PL International
Danida
deNim
FAO
Frame Textiles
GTZ
ICAC
Monsanto
Rockefeller Foundation
SA Cotton Trust
SACTMA
SBH Cotton Mills
Scientific Committee

Prof Lawrence Hunter Divisional Fellow and Leader: Scientific and Technical Excellence, Division of Manufacturing and Materials Technology of the CSIR and Professor Extraordinary and Head of the post-graduate Department of Textile Science, University of Port Elizabeth

Prof Sakkie Pretorius Professor and chairperson – Department of Plant Sciences, University of the Free State

Ms Annette Swanepoel Senior researcher – ARC-Institute for Industrial Crops

Dr Martie Botha Senior researcher – ARC-Institute for Industrial Crops

Dr Frans Weitz Plant systematist – Department of Biodiversity and Conservation Biology, University of Western Cape

Dr Deon Joubert Director – ARC-Institute for Industrial Crops

Dr Chris Steenkamp Consultant

Dr Sarel Broodryk IPM Advisor

Prof Maryke Labuschagne Professor, Department of Plant Sciences, University of the Free State

Dr Graham Thompson Assistant Director, ARC-Vegetable and Ornamental Plants Institute

Mr Jean-Luc Hof Researcher – Department of Plant Production and Soil Science, University of Pretoria

Prof Charles Reinhardt Professor and Head of the Department – Plant Production and Soil Science, University of Pretoria
Advances in participatory cotton breeding in Benin

S. Lewicki¹, J. Lançon², M. Djaboutou¹, E. Sekloka¹, D. Takpara³, L. Assogba³ and B.I. Orou Mousse³

¹ Institut National de Recherches Agricole du Bénin, Centre de Recherche Coton et Fibres, Cotonou BÉNIN
² CIRAD, Programme Coton, Montpellier FRANCE
³ Fédération des Unions de Producteurs, Abomey BÉNIN

Correspondence author sylvie.lewicki_dhainaut@cirad.fr
ABSTRACT

The main objectives of the participatory cotton breeding program in Benin are (1) to improve the information flow between producers and researchers, particularly for a better understanding of users requirements, (2) to breed for genotype x environments interactions in four typical agro climatologic sites. The original population was composed of intercrossing 14 genotypes of diverse origins. Four breeding cycles have already been accomplished. In each cycle, 200 plants are chosen on the three sites managed by farmer-breeders as well as on the one managed by formal breeders. Out of these, the best 50 are finally selected jointly by farmers and researchers for the quality of their fiber and sown as a mixture the following year. The populations selected in all four sites are compared with the original population and two commercial cultivars in a five locations trial in order to evaluate the genetic progress realized at each site. Results are summarized throughout a Principal Component Analysis including yield, earliness and plant development characteristics. They show that (1) genetic progress occurs in all selected populations, (2) breeding sites are easily differentiated, (3) farmer-breeder populations are more productive and (4) populations selected by formal breeders are less developed. Next steps will include stabilizing the populations and quantifying the respective effects of Environment and Breeder on these results.

Introduction

Cotton breeding in French speaking Africa has been successful in transmitting improved genetic material to farmers. Breeders were able to gather a lot of information and to combine them in some sort of a crop ideotype to match all users requirements.

As institutional environment changes, producers tend to become majors actors of the cotton industry and cotton research needs to strengthen its links with them. That is why a participatory cotton-breeding program was initiated in 1995.

In this paper, we evaluate the genetic progress obtained through this design, especially the one obtained by farmer-breeders after four selection cycles.

Experimental procedure

Design, genetic material and methods are described in Sékloka et al. (2002). A highly variable population was grown in four different environments where different selection pressures occurred due to different environments as well as breeders (Figure 1). At each location and cycle, 1000 were planted and each breeder chose 200 plants in his field. After fiber technological traits measurements, only 50 plants were selected. A same quantity of seeds (50 g) from these 50 plants were mixed to constitute the next breeding generation.

In 2001, 12 populations (Figure 2) were compared in four locations with the original population AGP0 as well as with local cultivars (STAM 18A and H279-1). The material was included in a Fisher block layout with five replications. A Principal Component Analysis was performed with STAT-ITCF (Philippeau, 1992) on 13 agro-morphological traits, six considered as main and seven as supplementary.

Results

Genotypes

Individual populations and checks results are presented in Table 1. All three farmer-bred populations reached an average level of productivity that was comparable to the better check (H 279-1). First fruiting branches were high, indicating lateness. Although early, research-bred population performed poorly (-150kg.ha⁻¹). Among farmer-bred populations, Savalou was the latest (FFL, FBO, EAR), the hairiest and the most vegetative. Djougou was the earliest.

PCA

The first two PCA axes accounted respectively for 43,5% and 28,8% of the total variation (Table 2). First axis was well correlated with earliness (FFL), number of vegetative branches (VBN) and hairiness (HAI). It opposed early, smooth genotypes and late, hairy genotypes bearing numerous vegetative branches. Second main axis was correlated with the total number of bolls (BNB), the fruiting branches length (FBL) and the total plant height (PHG). It opposed tall and productive genotypes with smaller and less productive ones. In the two axis plan, the 3 farmer-breeding groups were relatively distinguishable from each other and from the research-bred one (Figure 3). Djougou’s group of genotypes faced Savalou’s (late, vegetative and hairy). The lower part of the second axis is occupied by Kandi’s tall genotypes with numerous bolls. The research group stayed in the center of the graph.

Conclusions

These results show that genetic changes occurred in all populations groups and breeding sites are easily differentiated from each other. The populations of Savalou look more productive and late. This project has created genetic variability and selected material. Farmers are involved in this process by there collabo-
rative and collegial contributions (Sperling et al., 1996). Farmer-breeders have proved their ability to perform efficient breeding. After several years of work in common with scientists, they are also able to use more sophisticated breeding techniques necessary to produce stabilized lines. These lines will soon be available for generalized on farm testing under contrasted environments and cropping conditions.

References

Table 1. Mean performances of the 15 genotypes.

<table>
<thead>
<tr>
<th>Mean performances</th>
<th>FFL (days)</th>
<th>HAI (0-4°)</th>
<th>YLD (kg/ha)</th>
<th>FBL (cm)</th>
<th>VBN</th>
<th>BNB</th>
<th>FBO (days)</th>
<th>EAR (%)</th>
<th>PHG (cm)</th>
<th>LFB (cm)</th>
<th>FFB (cm)</th>
<th>FFN (cm)</th>
<th>VBL (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAM 18 A</td>
<td>58.3</td>
<td>2.7</td>
<td>1594</td>
<td>38.3</td>
<td>2.1</td>
<td>15.1</td>
<td>109.7</td>
<td>57.6</td>
<td>110.9</td>
<td>89.6</td>
<td>16.5</td>
<td>5.7</td>
<td>52.7</td>
</tr>
<tr>
<td>H 279-1</td>
<td>56.8</td>
<td>3.0</td>
<td>1749</td>
<td>37.4</td>
<td>1.9</td>
<td>14.1</td>
<td>108.3</td>
<td>61.2</td>
<td>104.4</td>
<td>85.1</td>
<td>15.4</td>
<td>5.5</td>
<td>47.6</td>
</tr>
<tr>
<td>AGP 0</td>
<td>58.5</td>
<td>2.7</td>
<td>1587</td>
<td>33.3</td>
<td>1.8</td>
<td>13.3</td>
<td>110.7</td>
<td>57.5</td>
<td>102.3</td>
<td>82.6</td>
<td>16.5</td>
<td>5.4</td>
<td>44.5</td>
</tr>
<tr>
<td>Djougou 2</td>
<td>57.4</td>
<td>3.0</td>
<td>1574</td>
<td>35.1</td>
<td>2.3</td>
<td>13.3</td>
<td>110.3</td>
<td>58.3</td>
<td>103.7</td>
<td>83.1</td>
<td>17.9</td>
<td>5.7</td>
<td>49.7</td>
</tr>
<tr>
<td>Djougou 3</td>
<td>56.6</td>
<td>2.7</td>
<td>1728</td>
<td>35.2</td>
<td>2.4</td>
<td>13.3</td>
<td>110.1</td>
<td>56.2</td>
<td>104.7</td>
<td>85.9</td>
<td>18.1</td>
<td>5.7</td>
<td>51.1</td>
</tr>
<tr>
<td>Djougou 4</td>
<td>57.1</td>
<td>2.6</td>
<td>1723</td>
<td>36.8</td>
<td>2.4</td>
<td>14.7</td>
<td>110.1</td>
<td>56.7</td>
<td>105.1</td>
<td>87.1</td>
<td>17.6</td>
<td>5.7</td>
<td>54.0</td>
</tr>
<tr>
<td>Kandi 2</td>
<td>58.6</td>
<td>2.9</td>
<td>1629</td>
<td>35.1</td>
<td>2.5</td>
<td>15.7</td>
<td>110.6</td>
<td>54.4</td>
<td>105.0</td>
<td>86.1</td>
<td>18.4</td>
<td>6.0</td>
<td>53.3</td>
</tr>
<tr>
<td>Kandi 3</td>
<td>58.9</td>
<td>2.8</td>
<td>1722</td>
<td>39.4</td>
<td>2.5</td>
<td>15.8</td>
<td>110.4</td>
<td>53.0</td>
<td>110.3</td>
<td>90.0</td>
<td>18.0</td>
<td>5.7</td>
<td>57.9</td>
</tr>
<tr>
<td>Kandi 4</td>
<td>58.4</td>
<td>2.8</td>
<td>1655</td>
<td>35.5</td>
<td>2.4</td>
<td>14.8</td>
<td>109.9</td>
<td>55.4</td>
<td>107.2</td>
<td>86.9</td>
<td>17.6</td>
<td>5.7</td>
<td>53.2</td>
</tr>
<tr>
<td>Okpara 2</td>
<td>59.0</td>
<td>2.7</td>
<td>1533</td>
<td>34.9</td>
<td>2.3</td>
<td>14.6</td>
<td>110.5</td>
<td>53.1</td>
<td>107.6</td>
<td>90.3</td>
<td>18.4</td>
<td>6.0</td>
<td>50.3</td>
</tr>
<tr>
<td>Okpara 3</td>
<td>58.1</td>
<td>3.0</td>
<td>1576</td>
<td>35.6</td>
<td>2.3</td>
<td>14.7</td>
<td>110.7</td>
<td>57.7</td>
<td>108.3</td>
<td>88.3</td>
<td>17.7</td>
<td>5.8</td>
<td>52.8</td>
</tr>
<tr>
<td>Okpara 4</td>
<td>57.7</td>
<td>2.8</td>
<td>1527</td>
<td>35.1</td>
<td>2.2</td>
<td>13.5</td>
<td>110.2</td>
<td>61.8</td>
<td>103.6</td>
<td>82.4</td>
<td>17.1</td>
<td>5.7</td>
<td>53.2</td>
</tr>
<tr>
<td>Savalou 2</td>
<td>59.0</td>
<td>3.4</td>
<td>1692</td>
<td>33.3</td>
<td>2.7</td>
<td>14.4</td>
<td>112.1</td>
<td>48.8</td>
<td>107.5</td>
<td>88.2</td>
<td>20.2</td>
<td>6.2</td>
<td>58.9</td>
</tr>
<tr>
<td>Savalou 3</td>
<td>59.7</td>
<td>3.4</td>
<td>1694</td>
<td>33.1</td>
<td>3.1</td>
<td>13.8</td>
<td>111.9</td>
<td>47.4</td>
<td>106.9</td>
<td>85.2</td>
<td>21.1</td>
<td>6.3</td>
<td>58.7</td>
</tr>
<tr>
<td>Savalou 4</td>
<td>60.2</td>
<td>3.3</td>
<td>1683</td>
<td>34.2</td>
<td>2.7</td>
<td>14.2</td>
<td>111.9</td>
<td>49.0</td>
<td>106.4</td>
<td>88.3</td>
<td>18.8</td>
<td>5.9</td>
<td>55.1</td>
</tr>
</tbody>
</table>

Main variables

- FFL: first flower (days after emergence); HAI: hairiness (0 to 5); YLD: seed cotton yield (kg/ha3); FBL: length of the longest fruiting branch (cm); VBN: number of vegetative branches; BNB: total number of bolls.

Secondary variables

- FBO: first open boll (days after emergence); EAR: Earliness (First yield weight/Total yield; weight %); PHG: Plant height (cm); LFB: Height of the last fruiting branch (cm); FFB: Height of the first fruiting branch (cm); FFN: First Fruiting branch node; VBL: Length of the longest vegetative branch (cm)
Table 2. Eigen values and proportion of variation associated with the three axis and eigen vector of traits for 13 agro-morphological traits.

<table>
<thead>
<tr>
<th></th>
<th>Axis 1</th>
<th>Axis 2</th>
<th>Axis 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigen value</td>
<td>2.6096</td>
<td>1.7282</td>
<td>1.1048</td>
</tr>
<tr>
<td>Total variation</td>
<td>43.5%</td>
<td>28.8%</td>
<td>18.4%</td>
</tr>
<tr>
<td>Main variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFL: First flower (days after emergence)</td>
<td>0.8940</td>
<td>-0.1729</td>
<td>0.2524</td>
</tr>
<tr>
<td>HAI: Hairiness (0 to 5)</td>
<td>0.8224</td>
<td>0.1710</td>
<td>-0.4004</td>
</tr>
<tr>
<td>YLD: Yield (kg/ha⁻¹)</td>
<td>0.0202</td>
<td>-0.3538</td>
<td>-0.9100</td>
</tr>
<tr>
<td>FBL: Length of the longest fruiting branch (cm)</td>
<td>-0.5460</td>
<td>-0.7623</td>
<td>-0.0173</td>
</tr>
<tr>
<td>VBN: Number of vegetative branches number</td>
<td>0.9059</td>
<td>-0.3109</td>
<td>0.0962</td>
</tr>
<tr>
<td>BNB: Total number of bolls</td>
<td>0.1220</td>
<td>-0.9306</td>
<td>0.2076</td>
</tr>
<tr>
<td>Secondary variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBO: First open boll (days after emergence)</td>
<td>0.7998</td>
<td>0.2140</td>
<td>0.0291</td>
</tr>
<tr>
<td>EAR: Earliness (First yield weight/Total yield weight %)</td>
<td>-0.8101</td>
<td>0.1392</td>
<td>0.2051</td>
</tr>
<tr>
<td>PHG: Plant height (cm)</td>
<td>0.2682</td>
<td>-0.7248</td>
<td>0.1575</td>
</tr>
<tr>
<td>LFB: Height of the last fruiting branch (cm)</td>
<td>0.2037</td>
<td>-0.7108</td>
<td>0.1105</td>
</tr>
<tr>
<td>FFB: Height of the first fruiting branch (cm)</td>
<td>0.7401</td>
<td>0.0955</td>
<td>-0.1673</td>
</tr>
<tr>
<td>FFN: First Fruitng branch node.</td>
<td>0.7615</td>
<td>-0.0351</td>
<td>-0.0394</td>
</tr>
<tr>
<td>VBL: Length of the longest vegetative branch (cm)</td>
<td>0.5823</td>
<td>-0.4227</td>
<td>-0.2176</td>
</tr>
</tbody>
</table>

Main variables

FFL: first flower (days after emergence); HAI: hairiness (0 to 5); YLD: yield (kg/ha⁻¹); FBL: length of the longest fruiting branch (cm); VBN: number of vegetative branches; BNB: total number of bolls.

Secondary variables

FBO: first open boll (days after emergence); EAR: Earliness (First yield weight/Total yield; weight %); PHG: Plant height (cm); LFB: Height of the last fruiting branch (cm); FFB: Height of the first fruiting branch (cm); FFN: First Fruitng branch node; VBL: Length of the longest vegetative branch (cm).
Figure 1. Farmer-breeders and research-breeders sites.
Figure 2.
Breeding steps and genetic material produced.

Figure 3.
Scatter diagram for the 15 genotypes.