MONSANTO

imagine™

Monsanto is proud to be associated with WCRC-3
World Cotton Research Conference (3rd: 2003: Cape Town, South Africa)

Proceedings of the World Cotton Research Conference-3:
Chief editor: A. Swanepoel

1. Cotton – Research – Conference
I. Swanepoel, A. (Annette)

Publisher: Agricultural Research Council - Institute for Industrial Crops
Layout and design: D.Comm
Print: D.Comm

In preparing the proceedings of the World Cotton Research Conference-3, the editors have made a good faith effort to avoid any errors, omissions or other editing mistakes in the process of converting presentations and papers into these proceedings. However, the editors cannot ensure against all such errors.
ORGANISING COMMITTEE

International organizing committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Terry P Townsend (Chairman)</td>
<td>Executive Director of the International Cotton Advisory Committee</td>
</tr>
<tr>
<td>Dr Jean-Philippe Deguine</td>
<td>Deputy Director, CIRAD-CA, France</td>
</tr>
<tr>
<td>Peter Griffie</td>
<td>Plant Production and Protection Division, FAO, Italy</td>
</tr>
<tr>
<td>Dr Francisco Davila-Ricciardi</td>
<td>President, CONALGODON, Columbia</td>
</tr>
<tr>
<td>Dr Andrew Jordan</td>
<td>Technical Director, National Cotton Council of America, USA</td>
</tr>
<tr>
<td>Dr Joe CB Kabissa</td>
<td>General Manager, Tanzanian Cotton Lint and Seed Board, Tanzania</td>
</tr>
<tr>
<td>Dr Abdusattor Abdukarimov</td>
<td>Director General, Institute of Genetics & Plant Exp. Biology, Uzbekistan</td>
</tr>
<tr>
<td>Mr Ralph Schulze (Chairman WCRC-1)</td>
<td>Executive Director, Cotton Research & Development Corporation, Australia</td>
</tr>
<tr>
<td>Dr Kiratso Kosmldou-Dlmtnropoulou</td>
<td>Director, Hellenic Cotton Board, Greece</td>
</tr>
<tr>
<td>Dr Deon Joubert (Chairman WCRC-3)</td>
<td>Director, ARC Institute for Industrial Crops, South Africa</td>
</tr>
</tbody>
</table>

National organizing committee

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>Dr Deon Joubert, Director ARC Institute for Industrial Crops</td>
</tr>
<tr>
<td>Secretary</td>
<td>Ms Jeannie van Biljon, Snr Researcher, ARC Institute for Industrial Crops</td>
</tr>
<tr>
<td>Members</td>
<td>Mr Hennie Bruwer, CEO Cotton SA</td>
</tr>
<tr>
<td></td>
<td>Mr Hein Schrader, Quality Control Cotton SA</td>
</tr>
<tr>
<td></td>
<td>Mr Chris Nolte, Clark Cotton</td>
</tr>
</tbody>
</table>
SPONSORS

ABSA
Agricultural Research Council
CIRAD-CA
Clark Cotton
Cotton SA
CTA
D&PL International
Danida
deNim
FAO
Frame Textiles
GTZ
ICAC
Monsanto
Rockefeller Foundation
SA Cotton Trust
SACTMA
SBH Cotton Mills
Scientific Committee

Prof Lawrence Hunter
Divisional Fellow and Leader: Scientific and Technical Excellence,
Division of Manufacturing and Materials Technology of the CSIR and
Professor Extraordinary and Head of the post-graduate Department of
Textile Science, University of Port Elizabeth

Prof Sakkie Pretorius
Professor and chairperson – Department of Plant Sciences, University of
the Free State

Ms Annette Swanepoel
Senior researcher – ARC-Institute for Industrial Crops

Dr Martie Botha
Senior researcher – ARC-Institute for Industrial Crops

Dr Frans Weltz
Plant systematist – Department of Biodiversity and Conservation Biology,
University of Western Cape

Dr Deon Joubert
Director – ARC-Institute for Industrial Crops

Dr Chris Steenkamp
Consultant

Dr Sarel Broodryk
IPM Advisor

Prof Maryke Labuschagne
Professor, Department of Plant Sciences, University of the Free State

Dr Graham Thompson
Assistant Director, ARC-Vegetable and Ornamental Plants Institute

Mr Jean-Luc Hofs
Researcher – Department of Plant Production and Soil Science, University
of Pretoria

Prof Charles Reinhardt
Professor and Head of the Department – Plant Production and Soil
Science, University of Pretoria
Prototyping crop management systems for specific cotton growing conditions

J. Lançon1,2, J. Wery1, B. Rapidel1,2, M. Angokaye3, D. Ballo4, T. Brévault2, V. Cao2, J.P. Deguine2, P. Dugu2, B. Fadeignon5, M. Fok2, C. Gaborel2, E. Gérardeaux2, C. Klassou3 and A. Yattara4

1Umrc SYSTEM (unité mixte de recherche Cirad-Inra-Ensam sur les systèmes de culture tropicaux et méditerranéens)
2Cirad (Centre de coopération internationale pour la recherche agronomique en développement)
3Irad (Institut camerounais pour la recherche agronomique et le développement)
4Ier (Institut d’économie rurale du Mali)
5Inrab (Institut national de recherche agricole du Bénin)
Correspondence author jacques.lancon@cirad.fr
ABSTRACT

Cotton cultivation has expanded throughout West African savannahs following relatively standardised growing recommendations. Occurring institutional changes result in more diverse growing practices, less favourable zones under cropping and an overall diversification of cotton growing conditions. Current recommendations are then showing limitations and we try to develop a methodology for conceiving entire cropping systems that could be more adapted to most usual combinations of major constraints. This methodology is based upon expertise, knowledge or experience, whether retained by researchers, extension agents, farmers or users. It involves three successive steps or “rendezvous” devoted to: (i) The diagnosis of major constraints (identification and typology), (ii) The elaboration of the cropping prototype adapted to a chosen set of constraints and (iii) the evaluation and adaptation of the initial prototype after field testing. We present a case where cotton is grown with very limited water available, either because rains are scarce or because of late sowing. The prototypes formed by the experts have been tested in ten locations scattered between Benin, Cameroon and Mali. First results show that they should be specifically adjusted to local constraints before entering a second year of testing. Because it aims at answering a quite complex and very applied question, this approach provides an opportunity for mixing researchers and other actors of the sector and it also draws a good frame for planning research activities within a multidisciplinary group or researchers.

Experimental procedure

From a set of scattered techniques, we intend to propose a CMS, which takes into account interactions between techniques, cropping constraints and growers objectives.

The prototyping approach has been adapted by Lançon et al. (2002) from Vereijken (1997). It is based upon expertise, knowledge or experience, whether retained by scientists, extension agents, farmers or users. It involves three successive “rendezvous” (RV; Figure 1) devoted to (i) the diagnosis of major constraints (identification, classification and priority setting), (ii) the elaboration of the crop prototype adapted to a chosen set of constraints and (iii) the evaluation and adaptation of the initial prototype after field testing.

At the end of each experimentation cycle, scientists decide how to modify the initial prototypes (adjustment phase) to better match the target value.

Preliminary results

Step 1: we present a case where cotton is sown late in the season because of labor force limitation. As a consequence of delayed planting, the amount of natural N and water available for the crop are reduced, and constraints such as insect attacks or labor competition occur at different periods of the plant growth (Figure 2).

Step 2: in the 2nd RV of the approach (Figure 1), scientists propose a CMS prototype (Figure 3), which greatly differ from the standard one (Figure 4) including earlier genotype, increased plant stand, use of herbicides, lower rates of fertilizers, growth regulators and less insecticide spraying.

Step 3: in 2002-03, the first prototypes are compared with standard CMS checks in ten locations scattered between Benin, Cameroon and Mali. Evaluation indicators have been recorded in order to qualify their agronomic, economic and social performance.

Discussion

This approach helps to organize multidisciplinary research and coordinate disciplinary activities in a more demand driven way. It offers a framework where scientists and other sector stakeholders can join their efforts to solve complex questions. To improve the prototyping methodology, we investigated an approach based on conceptual and systemic description of the farmer’s field in combination with models used to simulate the effects of techniques (sowing date and density for example).
References

Figure 1.
Three steps for elaborating a CMS.

Figure 2.
Delayed planting results in new constraints to be managed by the cotton grower.
Figure 3. An example of a CMS prototype for late planting.

Figure 4. An example of standard CMS recommendation.