WORLD COTTON RESEARCH CONFERENCE-3

COTTON PRODUCTION FOR THE NEW MILLENIUM

9 - 13 MARCH 2003 • CAPE TOWN, RSA
Monsanto is proud to be associated with WCRC-3

Cape Town, South Africa, 9-13 March 2003
Chief editor
A Swanepoel

Scientific editors

Dr Samuel Alabi
Dr Sarel Broodryk
Dr Roy Cantrell
Dr Greg Constable
Dr John Gorham
Dr Kater Hake
Dr Rory Hillocks
Dr Lawrence Hunter
Dr Geoff McIntyre
Dr Jodi McLean
Dr Mustafa
Dr Bruce Pyke
Dr Derek Russell
Dr Shuki Saranga
Ms Jeannie Van Biljon

Nigeria
South Africa
USA
Australia
UK
USA
UK
South Africa
Australia
Australia
Sudan
USA
UK
Israel
South Africa

Breeding
Entomology
Breeding
Breeding
Physiology/Biochemistry
Biotechnology
Plant pathology
Fiber quality
Irrigation/Water stress
Agronomy
Breeding
Extension
Entomology
Agronomy
Nematology

Managing editor
A Swanepoel

Cape Town, South Africa, 9-13 March 2003
ORGANISING COMMITTEE

International organizing committee

Dr Terry P Townsend (Chairman) Executive Director of the International Cotton Advisory Committee
Dr Jean-Philippe Deguine Deputy Director, CIRAD-CA, France
Peter Griffée Plant Production and Protection Division, FAO, Italy
Dr Francisco Davila-Ricciardi President, CONALGODON, Columbia
Dr Andrew Jordan Technical Director, National Cotton Council of America, USA
Dr Joe CB Kabissa General Manager, Tanzanian Cotton Lint and Seed Board, Tanzania
Dr Abdusattor Abdurakimov Director General, Institute of Genetics & Plant Exp. Biology, Uzbekistan
Mr Ralph Schulze (Chairman WCRC-1) Executive Director, Cotton Research & Development Corporation, Australia
Dr Kiratso Kosmldou-Dlmltropoulou (Chairman WCRC-2) Director, Hellenic Cotton Board, Greece
Dr Deon Joubert (Chairman WCRC-3) Director, ARC Institute for Industrial Crops, South Africa

National organizing committee

Chairman Dr Deon Joubert, Director ARC Institute for Industrial Crops
Secretary Ms Jeannie van Biljon, Snr Researcher, ARC Institute for Industrial Crops
Members Mr Hennie Bruwer, CEO Cotton SA
 Mr Hein Schrader, Quality Control Cotton SA
 Mr Chris Nolte, Clark Cotton
SPONSORS

ABSA
Agricultural Research Council
CIRAD-CA
Clark Cotton
Cotton SA
CTA
D&PL International
Danida
deNim
FAO
Frame Textiles
GTZ
ICAC
Monsanto
Rockefeller Foundation
SA Cotton Trust
SACTMA
SBH Cotton Mills
Scientific Committee

Prof Lawrence Hunter Divisional Fellow and Leader: Scientific and Technical Excellence, Division of Manufacturing and Materials Technology of the CSIR and Professor Extraordinary and Head of the post-graduate Department of Textile Science, University of Port Elizabeth

Prof Sakkie Pretorius Professor and chairperson – Department of Plant Sciences, University of the Free State

Ms Annette Swanepoel Senior researcher – ARC-Institute for Industrial Crops

Dr Martie Botha Senior researcher – ARC-Institute for Industrial Crops

Dr Frans Weitz Plant systematist – Department of Biodiversity and Conservation Biology, University of Western Cape

Dr Deon Joubert Director – ARC-Institute for Industrial Crops

Dr Chris Steenkamp Consultant

Dr Sarel Broodryk IPM Advisor

Prof Maryke Labuschagne Professor, Department of Plant Sciences, University of the Free State

Dr Graham Thompson Assistant Director, ARC-Vegetable and Ornamental Plants Institute

Mr Jean-Luc Hofs Researcher – Department of Plant Production and Soil Science, University of Pretoria

Prof Charles Reinhardt Professor and Head of the Department – Plant Production and Soil Science, University of Pretoria
Plant population model versus average plant model in discrete process simulation: The case of cotton fruits abscission by COTONS® model

M. Cretenet¹, P. Martin¹, E. Jallas¹, R. Sequeira² and J. Jean¹.
¹ CIRAD, Montpellier FRANCE
² USDA-APHIS-CPHST, Raleigh NC U.S.A
Correspondence author michel.cretenet@cirad.fr
ABSTRACT

Sink-source balance for carbohydrate at the cotton plant level involves the fruit shedding process as the main mean for the cotton plant to adjust his demand to the offer. Obviously cotton crop simulation in a material balance approach needs to take in account the fruiting sites abscission process. The COTONS® model simulates cotton plant squares, blooms and bolls shedding as (i) a discrete process in a “plant population” simulation mode, and as (ii) a continuous process in an “average plant” simulation mode. This study compares field observations with the output data respectively in “average plant” and in “plant population” simulation modes. The model “is late” in both simulation modes: later model growth cut-out compared to observed data. This results from an over estimation of square abscission and under estimation of boll abscission by the model. In preferring square abscission the model favors vegetative growth because of higher sink force for boll compared to square. This is mainly the case in plant average simulation mode with the right simulated number of open bolls; even the green bolls simulated number is widely under estimated. At the opposite, the total number of squares and bolls abscissions in plant population simulation mode is well estimated in spite of a widely over estimated number of open bolls. Simulating the abscission process as a discrete process in plant population simulation mode seems to decrease the differences in cut-out delay, in green bolls number and in abscission number estimations. To improve cotton growth and development simulations, especially in fruit abscission process, the COTONS® model needs to be calibrable in plant population simulation mode respecting the discrete character of the simulated process.

Experimental procedure

Data were collected from an experimental design at Montpellier (42°60' N; 3°90' E; 2000 season). Daily meteorological data include solar radiation, minimum and maximum air temperatures, rainfall and wind speed. Soil analysis data (by layer up to 2 m depth) concern soil texture (for hydraulic properties estimation), mineral nitrogen content (NO3–, NH4+), carbon content and soil humidity. Plant data were collected from 2 x 32 m² plots sown on 19 May with DES 119 cotton variety. Two times five tagged plants were mapped two times each (15 days interval) from 16 August (85 DAE) to 22nd September (122 DAE). Data collected by plant mapping consist of plant height, number of main stem nodes, number of vegetative branches, number of fruiting branches, position and vein length of each leaf (for plant leaf area estimation based on allometric relationship), status (abscised, square, bloom, green boll and open boll) of each fruiting site. Number, weight and position of bolls harvested 181 DAE complemented the 10 tagged plants dataset, but did not participate in model calibration. Five-point moving averages (“observed data” in all figures) were calculated from time series corresponding to the 20 plant mappings (85 to 122 DAE). An eight variables x by 10 moving averages dataset is used for COTONS® model calibration, i.e. determination of 35 (variety specific) parameters values, by running a genetic algorithm which maximize the fitness between simulated (“average plant” mode) and observed data (moving averages).

Results and Discussion

The model “is late” in both simulation modes: squares and bolls appear later in simulations than in reality (Figures 2 and 3). This delay in simulating corresponds also to later cut-out in growth by the model: late increase of fruiting sites number compared to observed data (Figure 1). This could result from over estimation of square abscission and under estimation of boll abscission by the model. In preferring square abscission the model favors vegetative growth because of higher sink force for boll compared to square.

This is mainly the case in plant average simula-
tion mode with the right simulated number of open bolls in November; even the simulated number of green bolls in September is widely underestimated (Figure 3). At the opposite, the total number of squares and bolls abscissions in plant population simulation mode is well estimated even at the end of the season (Figure 4) in spite of a widely over estimated number of open bolls in November (Figure 3). The main differences between simulated and observed data seem to result from model’s over estimation of square abscission. Simulating the abscission process as a discrete process in plant population simulation mode seems to decrease the differences in cut-out delay (Figure 1), in green bolls number (Figure 3) and in abscission number (Figure 4).

Conclusion

To improve cotton growth and development simulations, especially in fruit abscission process, the COTONS® model needs to be calibrable in plant population simulation mode respecting the discrete character of the simulated processes.

References

Figure 1.
Plant leaf area dm² (in black) and plant fruiting sites number (in gray), plant population mode (solid line), average plant mode (dotted line) and observed data (symbols).

Figure 2.
Plant squares number. Plant population mode (solid line); average plant mode (dotted line) and observed data (symbols).
Figure 3.
Plant bolls number. Plant population mode (solid line), average plant mode (dotted line) and observed data (symbols).

Figure 4.
Plant abscissions number. Plant population mode (solid line), average plant mode (dotted line) and observed data (symbols).