WORLD COTTON RESEARCH CONFERENCE - 3

COTTON PRODUCTION FOR THE NEW MILLENNIUM

9 - 13 MARCH 2003 • CAPE TOWN, RSA
Monsanto is proud to be associated with WCRC-3
Cape Town, South Africa, 9-13 March 2003

PROCEEDINGS OF THE WORLD COTTON RESEARCH CONFERENCE
Cotton production for the new millennium

Chief editor
A Swanepoel

Scientific editors

Dr Samuel Alabi
Dr Sarel Broodryk
Dr Roy Cantrell
Dr Greg Constable
Dr John Gorham
Dr Kater Hake
Dr Rory Hillocks
Dr Lawrence Hunter
Dr Geoff McIntyre
Dr Jodi McLean
Dr Mustafa
Dr Bruce Pyke
Dr Derek Russell
Dr Shuki Saranga
Ms Jeannie Van Biljon

Nigeria
South Africa
USA
Australia
UK
USA
UK
South Africa
Australia
Australia
Sudan
USA
UK
Israel
South Africa
Breeding
Entomology
Breeding
Breeding
Physiology/Biochemistry
Biotechnology
Plant pathology
Fiber quality
Irrigation/Water stress
Agronomy
Breeding
Extension
Entomology
Agronomy
Nematology

Managing editor
A Swanepoel

Cape Town, South Africa, 9-13 March 2003
World Cotton Research Conference (3rd: 2003: Cape Town, South Africa)

Proceedings of the World Cotton Research Conference-3:
Chief editor: A. Swanepoel

1. Cotton – Research – Conference
I. Swanepoel, A. (Annette)

ORGANISING COMMITTEE

International organizing committee

Dr Terry P Townsend (Chairman)
Executive Director of the International Cotton Advisory Committee

Dr Jean-Philippe Deguine
Deputy Director, CIRAD-CA, France

Peter Griffee
Plant Production and Protection Division, FAO, Italy

Dr Francisco Davila-Ricciardi
President, CONALGODON, Columbia

Dr Andrew Jordan
Technical Director, National Cotton Council of America, USA

Dr Joe CB Kablissa
General Manager, Tanzanian Cotton Lint and Seed Board, Tanzania

Dr Abdusattor Abdukarimov
Director General, Institute of Genetics & Plant Exp. Biology, Uzbekistan

Mr Ralph Schulze (Chairman WCRC-1)
Executive Director, Cotton Research & Development Corporation, Australia

Dr Kiratso Kosmldou-Dlmtropoulou (Chairman WCRC-2)
Director, Hellenic Cotton Board, Greece

Dr Deon Joubert (Chairman WCRC-3)
Director, ARC Institute for Industrial Crops, South Africa

National organizing committee

Chairman
Dr Deon Joubert, Director ARC Institute for Industrial Crops

Secretary
Ms Jeannie van Biljon, Snr Researcher, ARC Institute for Industrial Crops

Members
Mr Hennie Bruwer, CEO Cotton SA

Mr Hein Schrader, Quality Control Cotton SA

Mr Chris Nolte, Clark Cotton
SPONSORS

ABSA
Agricultural Research Council
CIRAD-CA
Clark Cotton
Cotton SA
CTA
D&PL International
Danida
deNim
FAO
Frame Textiles
GTZ
ICAC
Monsanto
Rockefeller Foundation
SA Cotton Trust
SACTMA
SBH Cotton Mills
Scientific Committee

Prof Lawrence Hunter Divisional Fellow and Leader: Scientific and Technical Excellence, Division of Manufacturing and Materials Technology of the CSIR and Professor Extraordinary and Head of the post-graduate Department of Textile Science, University of Port Elizabeth

Prof Sakkie Pretorius Professor and chairperson – Department of Plant Sciences, University of the Free State

Ms Annette Swanepoel Senior researcher – ARC-Institute for Industrial Crops

Dr Martie Botha Senior researcher – ARC-Institute for Industrial Crops

Dr Frans Weitz Plant systematist – Department of Biodiversity and Conservation Biology, University of Western Cape

Dr Deon Joubert Director – ARC-Institute for Industrial Crops

Dr Chris Steenkamp Consultant

Dr Sarel Broodryk IPM Advisor

Prof Maryke Labuschagne Professor, Department of Plant Sciences, University of the Free State

Dr Graham Thompson Assistant Director, ARC-Vegetable and Ornamental Plants Institute

Mr Jean-Luc Hofs Researcher – Department of Plant Production and Soil Science, University of Pretoria

Prof Charles Reinhardt Professor and Head of the Department – Plant Production and Soil Science, University of Pretoria
Spinosad: a new chemistry to solve the pyrethroid resistance of *Helicoverpa armigera* (Hübner) in West Africa
ABSTRACT

The major insect pest of cotton and vegetable in West Africa, the bollworm Helicoverpa armigera (Hübner), recently developed resistance to pyrethroids via the overproduction of oxidases, leading to control failures in the field. One way to overcome this problem is restriction in pyrethroid use. Tested for six years in cotton, spinosad (Laser®) proved to be efficient for the control of H. armigera. Furthermore, no cross-resistance has been detected in a selected pyrethroid-resistant strain. Spinosad can be recommended to manage bollworm resistant populations in West Africa.

Introduction

Pyrethroid resistance in Helicoverpa armigera (Hübner) from West Africa is due to greater degradation of pyrethroids involving oxidases from the P450 family (Martin et al., 2002). Following the failure of treatments to control H. armigera in cotton, an insecticide resistance management strategy (IRM) was implemented with success in 1999 (Figure 1). IRM was based on the limitation of pyrethroid use and their replacement with endosulfan and profenofos (Ochou and Martin, 2001). Because spinosad (Laser®) is a new insecticide with a novel mode of action, it could be an alternative to these older products.

In the present study, bioassays with spinosad were done with a deltamethrin selected resistant strain of H. armigera and compared with a susceptible one to show any cross-resistance. At the same time, spinosad was tested in cotton fields to prove its efficacy in the IRM strategy recommended in West Africa.

Experimental procedure

The pyrethroid resistant H. armigera strain was collected from cotton in Côte d'Ivoire and selected with deltamethrin for ten generations. It was compared with the susceptible H. armigera strain BK77. Standard cotton leaf-dip bioassay (IRAC No.7) and feeding bioassays on artificial diet were used to determine spinosad toxicity according to Young et al. (2000).

The field trial was conducted in a Fisher block with eight replicates, at the Cotton Research Station of Bouaké. Spinosad was used at 48 g a.i./ha in association with chlorpyriphos at 300 g a.i./ha to control mites. The checks were endosulfan and profenofos at 700 g a.i./ha. These insecticides were applied two times in the first window, as per IRM strategy, and compared with the untreated. Subsequently from 72 to 115 days after emergence (DAE), the treated plots were sprayed four times with the same mixture, cypermethrine + profenofos (36+150 g a.i./ha). Individual plots were scouted once a week from 30 to 66 DAE.

Results and discussion

Spinosad is a new molecule efficient to control Jacobiella facialis, H. armigera and Earias spp., which are the major cotton pest in the first stage of the Insecticide Resistance Management strategy (Figure 2). This molecule gives the same cotton yield as endosulfan and profenofos when used in the first stage of IRM (Figure 3).

Spinosad shows no cross-resistance with deltamethrin. LD50s for the pyrethroid resistant strain BK99R10 and susceptible strain BK77 were not statistically different with leaf-dip bioassay and ingestion assay respectively (Table 1). Furthermore, dose-mortality data showed a similar response for the deltamethrin selected strain and a field strain BK01 collected from cotton in October 2001 (Figure 4). Moreover, this molecule appears to be a good alternative to endosulfan and profenofos since it is less toxic to mammals and beneficials insects (Borth et al., 1996).

Conclusion

The IRM strategy proved successful during the first three years of its widespread use at a regional scale as there was no longer any field infestation problem due to the bollworm H. armigera. To keep this advantage we recommended the implementation of mosaic strategy with spinosad, endosulfan and profenofos. Therefore, the overall toxicity level of cotton insecticides and the risk of resistance will be reduced.

References

Table 1. Toxicity of insecticides to the susceptible (BK77), and the resistant strain (BK99R10) of H. armigera with leaf-dip assay (LD) and ingestion assay (Ing.).

<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>Strain</th>
<th>Slope ± se</th>
<th>LD50 (95% CL)</th>
<th>RF50 ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinosad (LD)</td>
<td>S</td>
<td>1.72 ± 0.25</td>
<td>0.916 mg/ml (0.626-1.233)</td>
<td></td>
</tr>
<tr>
<td>(Nicotinic receptor activator)</td>
<td>R</td>
<td>1.35 ± 0.28</td>
<td>0.387 mg/ml (0.114-0.730)</td>
<td>0.4 ns</td>
</tr>
<tr>
<td>Spinosad (Ing.)</td>
<td>S</td>
<td>2.36 ± 0.35</td>
<td>0.395 µg/g (0.252-0.526)</td>
<td></td>
</tr>
<tr>
<td>(Nicotinic receptor activator)</td>
<td>R</td>
<td>1.15 ± 0.17</td>
<td>0.254 µg/g (0.106-0.442)</td>
<td>0.5 ns</td>
</tr>
<tr>
<td>Deltamethrin (Ing.)</td>
<td>S</td>
<td>1.72 ± 0.37</td>
<td>0.023 µg/g (0.007-0.043)</td>
<td>-</td>
</tr>
<tr>
<td>(Pyrethroid)</td>
<td>R</td>
<td>1.80 ± 0.39</td>
<td>4.945 µg/g (2.485-7.264)</td>
<td>215 s</td>
</tr>
</tbody>
</table>

¹ Resistance Factor = LD50 resistant strain / LD50 susceptible strain.

Figure 1. Insecticide Resistance Management strategy recommended in Côte d’Ivoire, West Africa. Pyrethroid alternatives are used in the first stage.

Figure 2. Mean of cotton pests during the first stage of the Insect Resistance Management strategy with endosulfan (700 g/ha), profenofos (700 g/ha) or spinosad (48 g/ha) compared with control (no treatment).
Spinosad: a new chemistry to solve the pyrethroid resistance of Helicoverpa armigera (Hübner) in West Africa

Figure 3.
Cotton yield with endosulfan (700 g/ha), profenofos (700 g/ha) and spinosad + chlorpyriphos (48+300 g/ha) used in the first stage of the Insecticide Resistance Management strategy and compared with the untreated control.

Figure 4.
Ingestion toxicity of spinosad for H. armigera field strain BK01 (*), and deltamethrin-selected strain BK99R10 (○).