Bt cotton for small farmers in China

EC Inco Dev FPV programme ICA4-CT-2001-10069 2001-04

<u>Derek Russell</u>¹, F-H Wan, <u>Y.Puyun</u>, W.Wu, G.Lovei, J-M Vassal, S.Murphy, A.Poswal

¹Natural Resources Inst. (UK)

CHINA'S POSITION IN WORLD COTTON

Country	Cotton farmers (millions)	Cotton area (m ha)	Average cotton holding per farm (ha)	Lint yield (kg/ha)
China	11.00	4.8	0.4	1,103
India	4.00	8.7	2.2	350
Pakistan	1.50	3.1	2.1	593
West Asia	0.13	1.0	8.0	-
South East Asia	0.25	0.5	2.0	-
USA	0.03	5.6	187.0	790
Australia	0.001	0.4	330.0	1,658
World	20.00	33.5		635 /

ISAAA Briefs (2002)

Pests of cotton in China

Killed by Cry1Ac

Bollworms

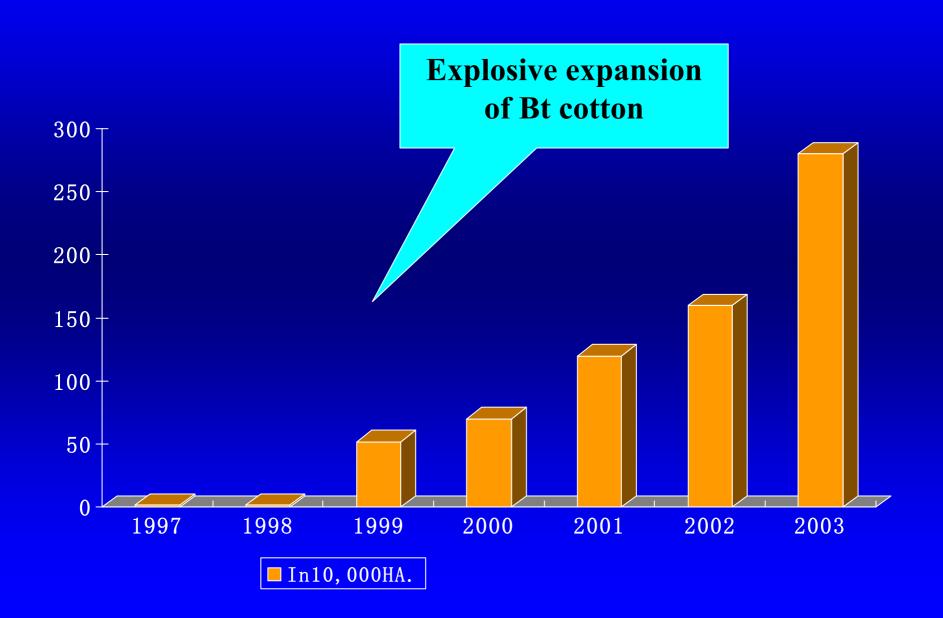
- cotton bollworm
- pink bollworm
- spiny/spotted bollworms

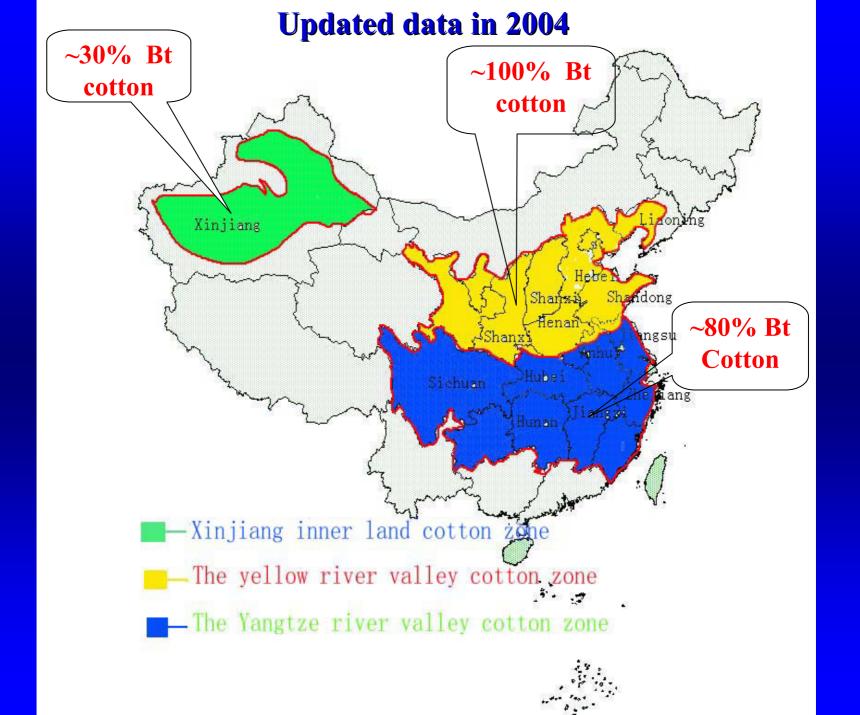
Not affected

- Leafworms
- Aphids
- Jassids
- Mites
- Plant bugs

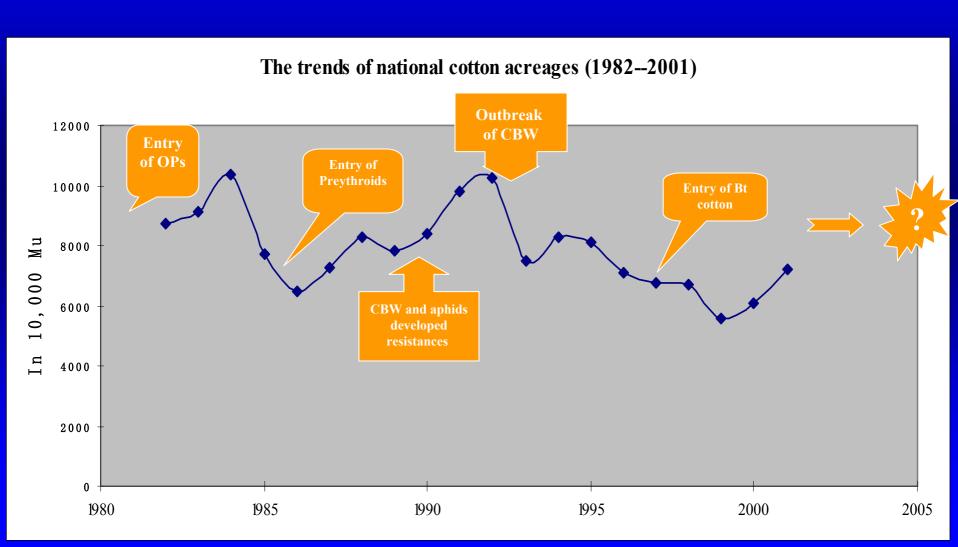
Points to cover

- How farmers use Bt cotton
- Impacts on:
 - Economics
 - Health
 - Target pests
 - Non-target organisms (lab and field)
- Farmer understanding of Bt cotton
- IPM in Bt cotton
- Evolved resistance to Bt cotton




Bt Cotton in China

- Introduced 1994 commercialised 1997
- 58 % of the national crop in 2004
- c. 5 million Bt farmers by the far the majority of all the world's GM farmers
- North Eastern Provinces (Shandong, Hubei etc) close to 100% Bt
- Western provinces (Xinjang) substantial Bt plantings although bollworm pests are minor



Bt Cotton in China

China cotton production

Our information

EC - FPV Inco Dev prog.	NATESC Bio. Cont. Inst. CAAS Nanjing Ag Univ NRI (UK) CIRAD (FR) DIAS (DK) CABI	P.Yang F-H Wan Y.Wu D.Russell J-M Vassal G.Lovei A.Poswal	Shandong Hebei
Chinese Academy of Sciences	CAS Rutgers Univ (USA)	J. Huang C.Pray, S.Rozelle	Shandong Hebei Henan Anhui Jiangsu

^{*} Plus other literature sources

BT Cotton material

Monsanto (Cry1Ac) 33B,99B High input

High yielding

Expensive

US Acala varieties

not fully IPM compatible

50-70% of the eastern cotton market

Chinese Academy of Agricultural Sciences

(Cy1Ac and 1Ab and CpTPI)

>10 varieties

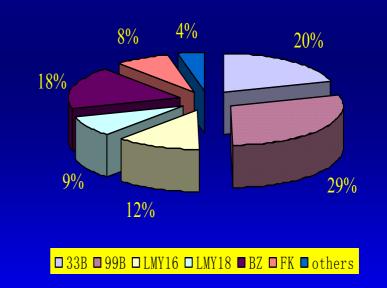
Lower input

Generally lower yielding

Cheaper

Locally adapted varieties

more IPM compatible


30-50% of the market and growing

^{*} Unregistered Bt varieties of variable quality are also widespread

Major commercialized Bt cotton varieties

- 33B, 32B, 99B Monsanto
- Zhongmian No. 29, 38 and 39--Cotton research institute of
 Chinese Academy of Agricultural
 Science.
- <u>GK-1, GK 12, SGK-2, SGK-12</u> ---Biotechnology Center of Chinese Academy of Agricultural Science.

The composations of different Bt cotton varieties in Lingqing county, Shandong provinces in 2002

Stacked gene Bt products in China

Cry1Ac/Cry2Ab cotton

Better bollworm mortality

Extends effectiveness to leafworms

Should delay resistance

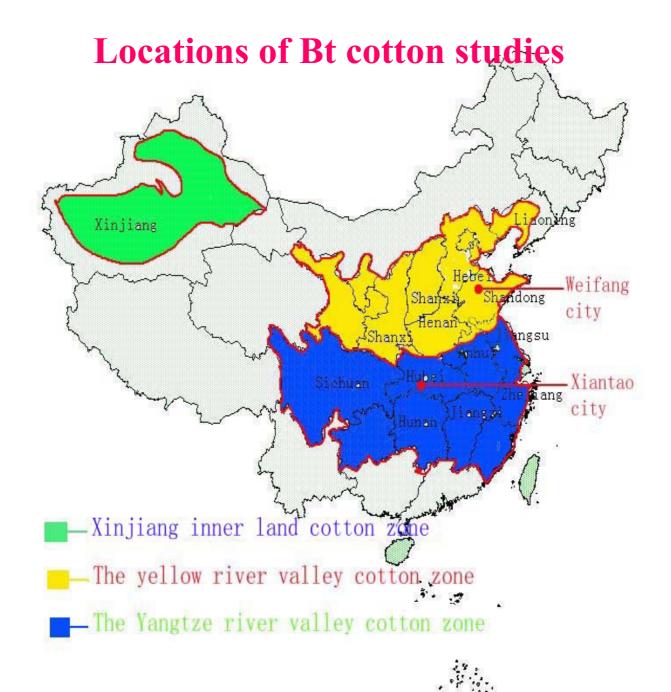
Cry1Ac/ Cowpea trypsin inhibitor cotton

- Provides a moderate level of suppression of number of key pests
- Should delay resistance

Target - bollworms

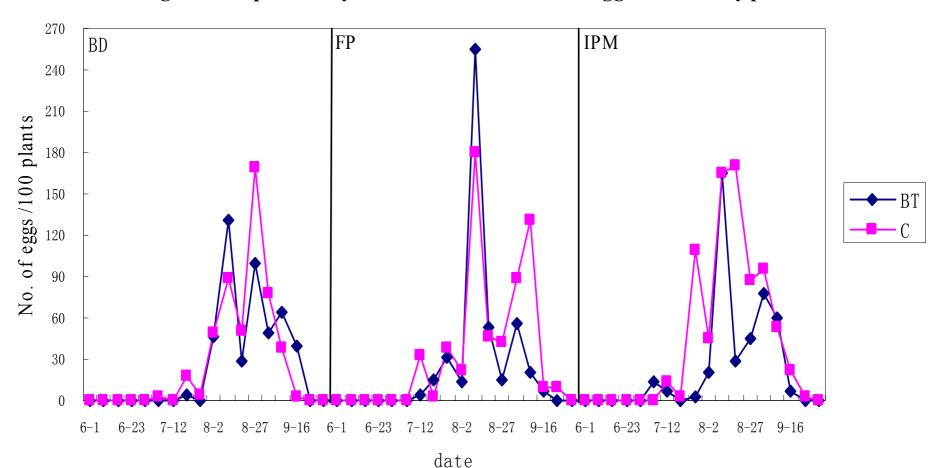
Efficacy: Spiny bollworms (Earias sps)

Pink Bollworm (Pectinophora gossypiella)


American bollworm (Helivoverpa armigera)

Insecticide use:

Average reduction c.60% in the number of applications


- Very effective

- Very effective
- Good mid-season
- Poor in late season (reduction in bio-availability of toxin)

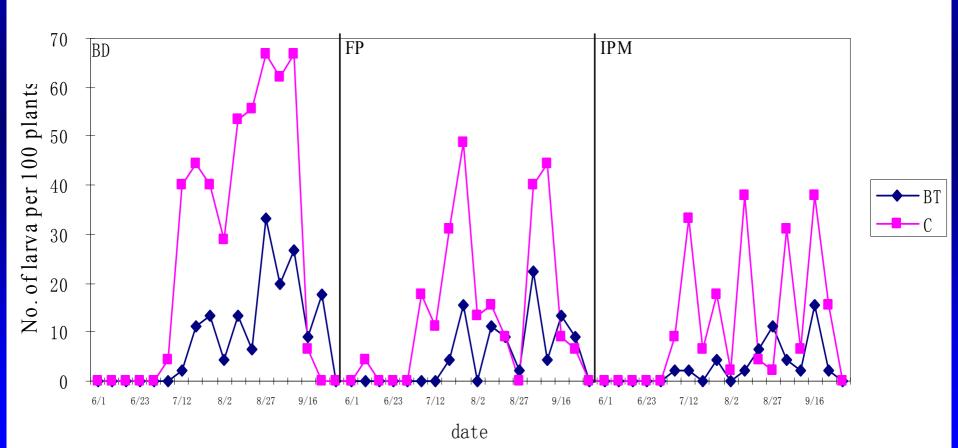

No significant difference in the oviposition of cotton bollworm

Figure 9 Population dynamics of cotton bollworm eggs in the study plots

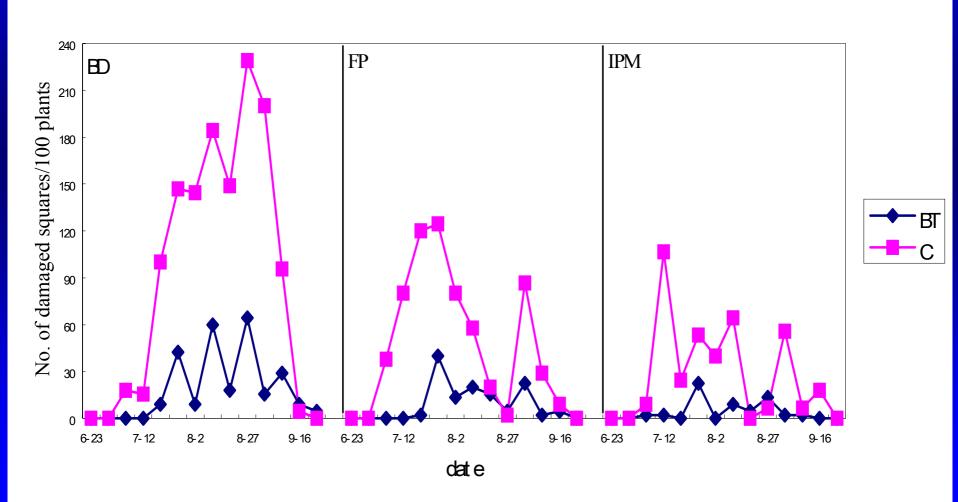

High resistance to cotton boll worm larvae

Figure 10 Population dynamics of cotton bollworm larva in the study plots

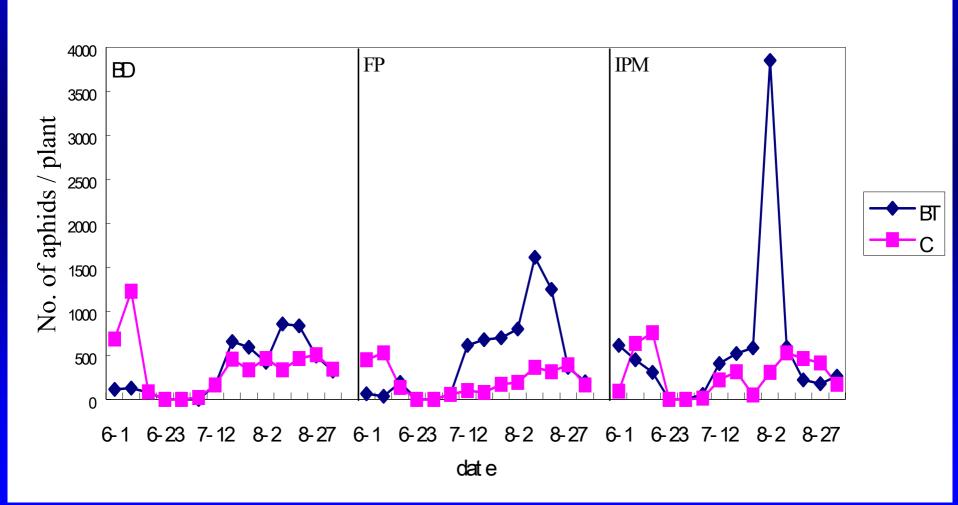

Low level of damaged Squares in the Bt cotton plots

Figure 7 The dynamics of damaged squares in the study plots

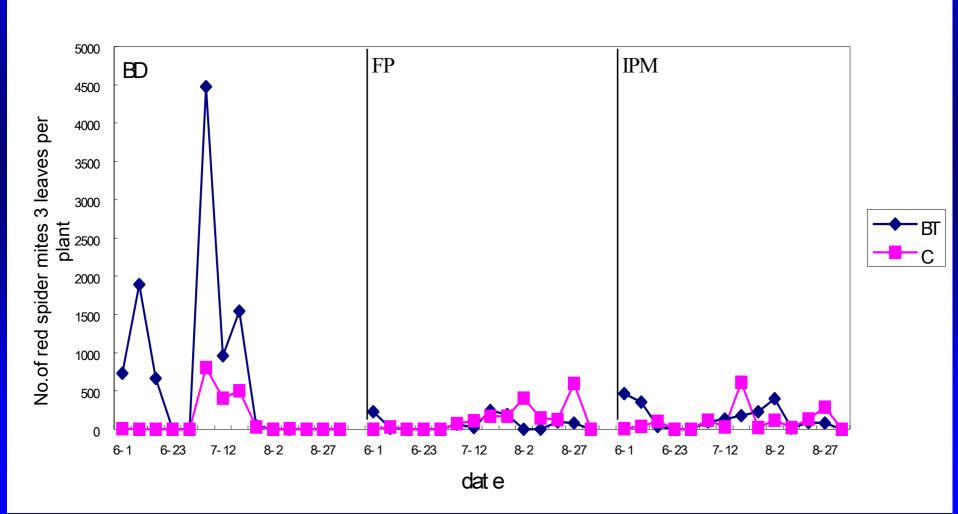

The resurgence of cotton aphids in Bt cotton after the application of pesticides

Figure 11 the Population dynamics of cotton aphids the study plots

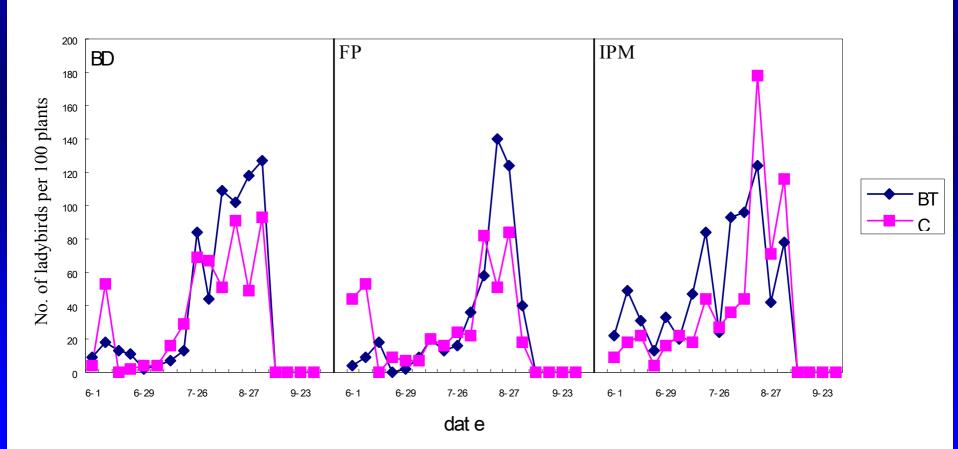

The resurgence of red spider mites in Bt cotton in BD plots

Figure 12 The population dynamics of the red spider mites in the study plots

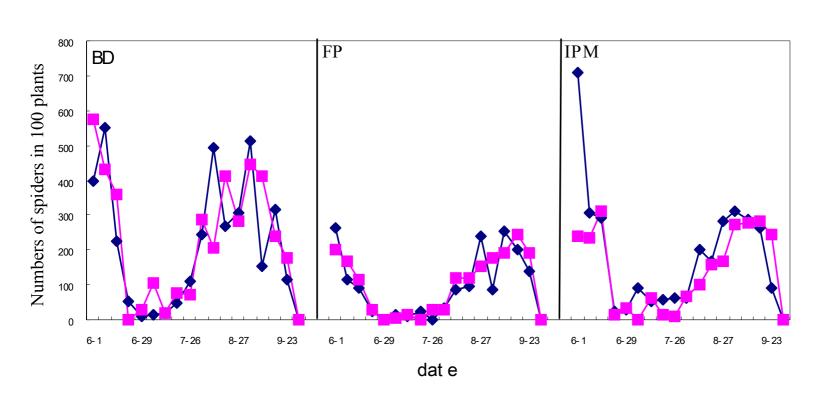

The abundance of ladybirds in the BD and IPM plots

Figure 15 The population dynamics of ladybirds in the study plots

The abundance of spiders in the BD and IPM plots

Figure 16 the population dynamics of spiders in the study plots

Non-target impacts (lab)

Using: Bt: NuCton 33B and GK12

Non-Bt: Si-main3 (parent of GK12)

_		
_		_

Leafworm Spodoptera litura Some growth reduction and

mortality

Whitefly Bemisia tabacci No effect

Decomposers

Springtail Sinella curviseta No effect

Non-target impacts (lab)

Using: Bt: NuCton 33B and GK12

Non-Bt: Si-main3 (parent of GK12)

Predators

Ladybeetles	Propylaea japonica	No effect
	Harmonia axyridis	Lighter when fed on affected pests
Lacewings	Chrysopa sinica	>mortality and development effects with 33B only.
	Chrysopa formosa	Smaller cocoon mass, longer pre-ovip. period, fewer eggs

Natural Enemy Complex ability to control aphids

Ladybird

Coccinella septempunctata

Predatory bug

Orius majusculus

No effect

Parasitoid

Aphidius colmani

Non-target impacts (field)

<u>Using</u>: Bt: 33B,99B,GK-12, GK12, SGK-321

Non-Bt: Si-main3, Si-yuan 321

Pests

Green leaf bug Whitefly

Lygus lucorum Bemisia tabacci No effect No effect

Decomposers

Springtails

More species and individuals but lower diversity index

Predators

Ladybeetles

Propylaea japonica

No effect

Predatory Bug

Orius sauteri

Some reduction in feeding in later nymphs

Spiders

Many species

Bt – 11 fams. 25 species

Pesticide – 8 fams. 12 species

IPM – 9 fams. 14 species

Bt seed cost in relation to other inputs

INPUT	Cost/ha	% total
		costs
Seed	\$61	10%
Fertiliser	\$271	43%
Pesticide	\$112	18%
Labour	\$186	29%

^{*} Land rent 363 \$US/ha

National Average Results * *ICAC 2004

	Bt cotton	Non-Bt cotton	% difference	References
No of sprays	8.1	19.8	-59%	Pray et al 2002
	6.6	19.8	-56%	Huang et al 2003
Insecticide Kg/ha	21.7 12.1 18	65.5 60.7 46	-70% -80% -61%	Pray et al 2002 Huang et al 2003 Lu et al 2002
Yields Kh/ha	3,246	2,741	+19	Pray et al 2002
	3,290	3,186	+3	Lu et al 2002

Economics of Bt cotton (Shandong 2002-3)

Yield	4,109 Kg/ha
	(seed cotton)
Net profit from cotton*	1,024 US\$/ha
Increase in net profit over non-Bt	c.47%
Total farm income - all sources	c.1,000 \$US
(avg.0.25ha cotton)	
Increase in total farm income	c.12%
* No price difference for Bt cotton	

Health implications of Bt use

The problem

- 600,000 cases of pesticide poisoning in 1995 (1% died)
- Farmers reporting health problems (Huang et al 2001)
 - Non-Bt farmers 22% (small sample)
 - 5% of Bt farmers (large sample)

Reduction in toxic material applied

(Huang et al 2001)

- Pyrethroids 95%
- Organochlorines 88%
- Organophosphates 82%

(Yang et al 2003)

- 60% reduction in all insecticides
- 80% reduction in bollworm sprays

Farmers' perceptions and practices on Bt cotton

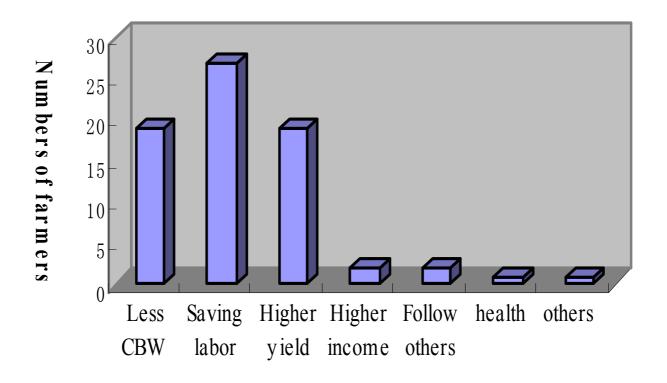
Study location

Lingqing county, Shandong province

Sample

92 Bt cotton farmer households in three villages

Study period


From April 2001 to Dec 2002 Season-long survey in 2002.

Farmer use of Bt cotton

- Bt seed cost 50-60% more than non-Bt cotton (c.\$US21/ha increase)
- <50% of Bt cotton area is farmer-saved seed (29% in Shandong)</p>
- Large amount of unauthorised movement of germplasm
- Bt cotton is varietal (not hybrid as in India)
- 17% of the Bt area intercropped with vegetables, maize, peanuts or watermelon

Farmers' motivation for adoption of Bt cotton

(Total sample of 92 farmer households in Lingqing, Shandong, 2002)

motivation categories

The proportions of inputs in Bt cotton plots

(Xiantao city, Hubei 2001)

Figure 18 the components of Inputs in Bt-FP plots

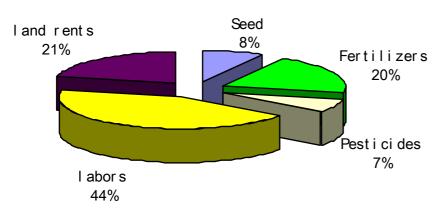
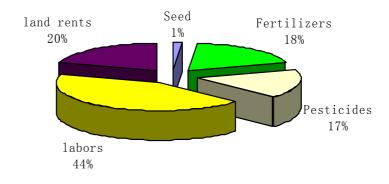



Figure 19 the components of inputs in The C-FP plots

Farmer* understanding of the Bt cotton system

Why	grow	it?
-----	------	-----

- Saves labour 95%
- Requires less spraying 91%
- Higher yields 88%
- More profitable 85%

Is it safe?

- Safe to eat 75%
- Safe in blankets 72%

Is bollworm still a problem?

■ It is – 65%

Identification of natural enemies?

- Ladybirds 50%
- Lacewings 17%
- Spiders 12%

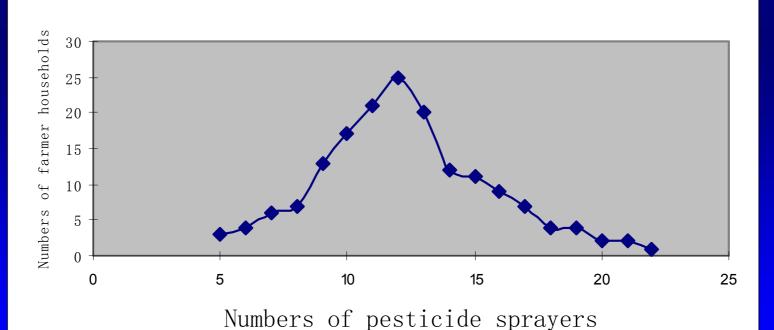
Indentification of mites and diseases?

Not at all

or educational level

^{*} No differences with gender

Insecticide Spraying on Bt cotton

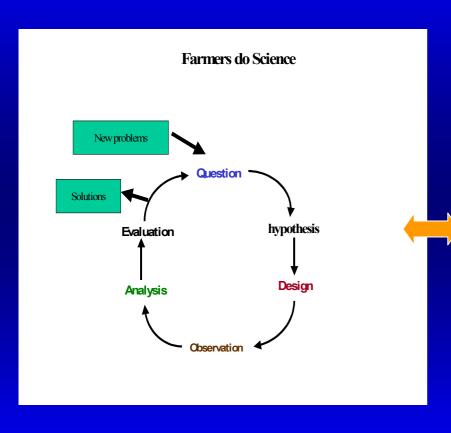

Farmers sprayed 12.7 times on average

(national average 8.1 v.19.8 on non-Bt cotton)

Pesticide costs in Bt cotton - 111.8 US\$/hectare on average

The distribution spraying frequencies of 92 sample farmers in Bt cotton

(Lingqing, Shandong 2002)



Improving IPM integration of Bt cotton

FAO Farmer Field School on Cotton IPM in Asia (2002-6 \$12 mill)
China, India, Pakistan, Vietnam,
Philippenes, Bangladesh

Working in China on enhancing farmer benefit from Bt

Principles of farmer participatory Bt cotton study in the program

- o. Help farmers to be critical and creative in solving their problems
- o Research process follows the learning cycle and the discovery approach
- o Lead to new question and new discovery by farmers
- o Results in farmer's success and accomplishment

Farmer participatory studies in six FSS in 2003

Study

- Efficacy testing
- Parasites of cotton aphids
- Foliar predators
- Ground predators

Findings

- Effective in bollworm generations 2 and 3 but not 4.
- Survived better and had more impact in Bt cotton
- Ladybeetles were more numerous and effective in Bt cotton
- Predatory beetles more numerous and effective in Bt cotton

Benefits of cotton FFS (data from FFS report 2003)

FFS in Conventional cotton

Net profit		1,150 US\$/ha
rice profit		1/130 034/11d

Increase in net profit over non-FFS 220%

FFS in Bt cotton

Net Profit		c.1,600	\$US/ha
		,	

Increase in net profit over non-Bt/non-FFS 307%

Increase in net profit over FFS in conventional 140%

cotton

Conclusion: Benefits of Bt and FFS are additive

Conclusions

Biological impacts

- Effective for bollworm control except in the late season
- Non-target pests are only marginally affected
- Impact on beneficial complex is minor

But

- More work required on soil faunal diversity
- Some evidence of secondary pests increasing in importance
- Bollworm resistance is a real threat. Dual gene deployment may delay this.

Farmer suitability

- Saves labour
- Significantly increases profit
- Benefit is further increased if combined with IPM
- Health impact considerable (but not well measured to date)

But

- Farmer understanding is poor
- Spraying still too high
- This is a continuing need for IPM training

Thank you for your attention

Acknowledgements:

Collaboration: EU IPM progamme in cotton in Asia (FFS)

Funding: EU Framework V – Inco Dev 'COTRAN'