Modelling Water, Nitrogen and Carbon Fluxes during Decomposition of Crop Residues, Incorporated or left at the Soil Surface

Filip Coppens1,3, Patricia Garnier1, Antoine Findeling2, Sylvie Recous 1, Roel Merckx3

1INRA, Unité d’Agronomie LRM, Laon (France)
2CIRAD-AMIS – Programme Agronomie, Montpellier (France)
3K.U.Leuven, Department of Land Management, Heverlee (Belgium)

Eurosoil, 04-12 September 2004
Introduction

• Global change:
 – carbon sequestration in agricultural land

• Reduced / no-tillage
 – change in crop residue localisation

 soil water dynamics
 nutrient distribution
 microbial activity

 Residue decomposition
 Fate of C, N in soil

• Soil column experiment
• Modelling
Experimental setup

- **Soil columns:**
 - Silt loam soil
 - sieved at 2 mm
 - compacted in columns (1.3 g/cm³; 25 cm, Ø 15 cm)
 - Oilseed rape residue
 - labelled 13C and 15N
 - particle size of 1 cm
 - incorporated (0-10 cm) or mulch
 - 14 g DM/column (equivalent 7.4 t/ha)

- **Incubation during 9 weeks at 20°C**
 - 3 dry-wet cycles
 - Rain applied with rain simulator: 2.5 h at 12 mm/h
Experimental setup

- Rain simulator
- Soil solution samplers
- Tensiometers
- TDR
- CO₂

Recous et al., this conference (n° 389)
Modelling

• **Why modelling?**
 – Interaction water dynamics ~ residue decomposition
 – Gross fluxes N-mineralization/immobilization
 – Scenario analysis
 • different rain applications
 • other crop residue quality

• **Which model?**
 – Link soil physical - biological processes
 – surface residue decomposition
 – simulation of ^{13}C, ^{15}N
Modelling: PASTIS model

- **PASTIS**: 1-dimensional, mechanistic model

- **module biotransformations C + N**
 - residue-C decomposition
 \[
 \frac{dC}{dt} = -K_i C_i f_T f_W f_N f_B
 \]
 (Garnier et al., 2003)

- **module transport**
 - water transfer
 \[
 \theta(t,z) \Rightarrow f_\theta(t,z)
 \]
 (Lafolie, 1991)
 - heat transfer
 \[
 T(t,z) \Rightarrow f_T(t,z)
 \]
 - solute transport
 \[
 [NO_3](t,z) \Rightarrow f_{[NO_3]}(t,z)
 \]
Modelling: C + N

Fresh Organic Matter (FOM)
- Rapidly decomposable material (RDM)
- Hemicellulose (HCE)
- Cellulose (CEL)
- Lignin (LIG)

Soluble Organic Matter (SOL)
- K_1
- K_2
- K_3
- K_4
- H_1
- K_s

Zymogenous Biomass (ZYB)
- V_{max}
- N/C

Humified Organic Matter (HOM)
- K_h

Autochtonous Biomass (AUB)
- K_a
Modelling: mulch decomposition

(Findeling et al., 2004)

Physical parameters
- initial mass of mulch
- max. mass in contact with soil
- min./max. water content
- max. rain interception
.....

Biological parameters
- quality = incorporation
- specific functions for
- Temperature
- Water content
- N availability

Soil

protected

decomposable

N_{inorganic}

Qc

Qnc

T_M, \theta_M
Modelling: concept

Input
- Constant temperature
- Hydrodynamic parameters
 - column control soil
- Biological parameters
 - incubation experiment

Model
- Initial conditions
- Boundary conditions

Output
- Water potential
- CO$_2$-flux
- NO$_3^-$-N
- residual 13C

Observation vs. Simulation

Soil water potential

Calibration: control columns
Same parameters for all treatments

- **Control**
 - Observation (-6 cm)
 - Simulation (-6 cm)
 - Observation (-14 cm)
 - Simulation (-14 cm)

- **Mulch**
 - Observation (-6 cm)
 - Simulation (-6 cm)
 - Observation (-14 cm)
 - Simulation (-14 cm)
Observation vs. Simulation

- **Control**
- **Water content mulch**
- **Incorporation**
- **Mulch**
Observation vs. Simulation

Residual oilseed rape-C

Incorp.: 55% C mineralized
Mulch: 18% C mineralized
Observation vs. Simulation

NO$_3^-$-N (0-5 cm soil layer)

- **Incorp.**: net N immobilization
- **Mulch**: net N mineralization

Measured NO$_3^-$-N:
- mineralization-immobilization, leaching + upward transport
Conclusion / Perspectives

• **Model**
 – interaction water / N-dynamics

• **Improvements for**
 – initial rate of C-mineralization
 – mulch decomposition
 • transport of nitrate, soluble C from mulch

• **Perspectives**
 – effect of residue quality
 – scenario analysis