POTENTIALITIES OF COTTONSEED PROTEIN CONCENTRATE IN THE CONTROLLED RELEASE OF INSECTICIDE

Jérôme Lecomte, CIRAD, France

COTONBIOMAT PROJECT FINAL WORKSHOP October 20th – 21st, 2005 Hotel Gloria Rio de Janeiro, Brazil

SUMMARY :

SOME GENERALS ASPECTS OF CONTROLLED RELEASE

Principles, objectives, applications and examples

STUDY OF IMIDACLOPRID RELEASE FROM COTTON-SEED PROTEIN-BASED MATERIALS

Hypotheses and Objectives Release tests from cotton-seed protein-based films Release tests from coated pellets

CONCLUSIONS AND PERSPECTIVES

THE CONTROLLED RELEASE

SOME GENERAL ASPECTS

POLYMERS AND CONTROLLED RELEASE

The controlled delivery of an active agent happens when it is judiciously combined with a synthetic or natural polymer in such a manner that it is released from the material in a predesigned way

MAIN APPLICATION FIELDS

Agriculture : active seedcoatings Medicine : drug delivery systems

MAIN ADVANTAGES/OBJECTIVES

"The right dose at the right time and the right place" Avoid under- or overdosing, increase stability Reduce amounts and enhance efficiency

<u>RELEASE MECHANISMS</u>

In a given delivery system, the release of an active agent could be ruled by one or a combination of three basic mechanisms

(1) Diffusion through a polymer of stable structure

- macroscopic scale : through matrix pores
- molecular level : between macromolecular chains

(2) Polymer breakdown (case of biodegradable polymers) Bulk erosion

Surface erosion

(3) Swelling of the matrix and diffusion/Relaxation (case of hydrogels)

characterized by 0.5 < n < 1 (anomalous transport)</p>

In the Ritger-Peppas's equation : fraction released = $k \cdot t^n$

CIRAD

French Agricultural Research Centre For International Development

<u>Mechanism 1 :</u> <u>Diffusion through non degradable polymers</u>

<u>Mechanism 2 :</u> <u>Release by polymer erosion</u>

Mechanism 3 : Swelling, relaxation and diffusion

JUDY OF STUDY OF FROM COTTONSEED FRONCOTTONSEED SLALAM DESAE-EMETORY

<u>AIM OF THE WORK :</u>

Determine if a cottonseed protein extract used as binder in seedcoating formulations, could control the release of Imidacloprid (Active agent of Gaucho®/ Bayer)

<u> Hypotheses</u> :

- 1) Protein matrix = Reservoir of active agent
- 2) Influence of cross-linking and plasticization on release

BURNCIPLE OF THE STUDY :

Kinetic studies of Imidacloprid release in water from films obtained in various conditions

PARAMETERS OF THE STUDY

In agreement with INCOTEC BV (CR3, WP3), the parameters of the film forming solution and films preparation were fixed in order to :

Ensure sufficient cross-linking with medium viscosities

Avoid gelling and microbiological spoilage

Lead to contrasted release kinetics

Be compatible with industrial process constraints

OBTAINING OF FILM-FORMING SOLUTIONS FROM FREEZE-DRIED COTPROT

OBTAINING OF COTPROT/ Gaucho® FILMS

FILMS BEFORE SAMPLING

100% COTPROT Film

Typical 55% Gaucho® film

Typical 90 % Gaucho® film

FILMS SAMPLES, BEFORE AND AFTER RELEASE

Films were divided into disc of 20 mm or 25 mm diameter in order to have the same imidacloprid weight, whatever the Gaucho ® content

Before release

After 30h release

RELEASE DEVICE and KINETICS (1)

RELEASE DEVICE and KINETICS (2)

RELEASE TESTS FROM COTTONSEED PROTEINS-BASED FILMS

INFLUENCE OF CROSS-LINKING ON RELEASE RATES

(Comparison of time at 50% Release : t $_{50\%}$)

INFLUENCE OF PLASTICIZER TYPE ON RELEASE RATES

(Comparison of time at 50% Release : $t_{50\%}$)

SLOWERING GAINS

(Comparison to a 100% Gaucho film, taken as reference = 1)

MECHANISM OF RELEASE Curve Modelling * / Ritger-Peppas's equation : $R\% = k.t^n$

* CurveExpert software 1.3 by Daniel Hyams

MECHANISM OF RELEASE Curve Modelling / Ritger-Peppas's equation : R% = k.tⁿ

Kinetic data modelling :

- 0.7 < n < 1

Experimental observations :

- Swelling of films in water
- weight loss = initial Gaucho weight
- Recovery of crosslinked films after 30h release (no or low dissolution)

We assumed that the imidacloprid release could be ruled by swelling and relaxation/difffusion phenomena, from films with behaviour similar to hydrogels

RELEASE TESTS FROM PELLETS

The coating of pelletized seeds was realized at INCOTEC BV (CR3, WP3), according to one of its current coating process

WITH

several film-coatings (FC) containing COTPROT or available commercial binders

COATED SEEDS WITH COTPROT-BASED FC

COATED SEEDS WITH INCOTEC's FC

KINETIC RESULTS (1)

Release kinetic on 40 pellets samples (32 mg imidacloprid)

KINETIC RESULTS (2)

Comparison of time at 50% Release : $t_{50\%}$

KINETIC RESULTS (3)

RELEASE FROM COTPROT FILMCOATINGS Comparison of films and coated pellets

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS

SIGNIFICANT REDUCTION OF IMIDACLOPRID RELEASE RATE IN FILMS THANKS TO COTTONSEED PROTEINS

Great influence of :

- Cross-linking (optimimun ratio around 2-3)
- Gaucho content (best results with the highest content)

Slight effect of plasticizer

Slower release with glycerol

UNEXPECTED RESULTS WITH COATED PELLETIZED SEEDS

Fast release and slight influence of cross-linking

PERSPECTIVES

AT LABORATORY SCALE

IMPROVEMENT OF CONTROLLED RELEASE PROPERTIES AND STUDIES OF RELEASE MECHANISMS

- Use of pure cottonseed proteins of specific fractions
- Variation of Hydrophoby/Hydrophily balance of protein (fonctionnalization) and active agents
- Plasticization effect with PEG of various molecular weight
- Influence of film thickness and drying condition
- Study of swelling capacity of films
- Test in normalized conditions

AT INDUSTRIAL SCALE TEST OF NEW COATING PROCESSES OR ADAPTATION OF CURRENT ONES

ACKNOLEDGEMENTS

The European Union (Financial support)

Paul Klemann and Frans Tetteroo (INCOTEC BV Netherlands, CR3 WP3)

Paulo Sobral and its team

(FZEA-USP Brazil, CR2 WP2)

Jean-Dominique Gomis

Student - Professional Bachelor's Degree in Polymer Science

Technicians of CIRAD Laboratory

Gilles Morel, Nelly Forestier-Chiron, Pascale Guiffrey

THANK YOU FOR YOUR ATTENTION