Agritrop
Accueil

From GCM grid cell to agricultural plot : Scale issues affecting modelling of climate impact

Baron Christian, Sultan Benjamin, Balme Maud, Sarr Benoit, Traoré Seydou B., Lebel Thierry, Janicot Serge, Dingkuhn Michaël. 2005. From GCM grid cell to agricultural plot : Scale issues affecting modelling of climate impact. Philosophical Transactions - Royal Society. Biological Sciences, 360 (1463) : 2095-2108.

Article de revue ; Article de revue à facteur d'impact
[img] Version publiée - Anglais
Accès réservé aux personnels Cirad
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_530286.pdf

Télécharger (602kB)

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie

Résumé : General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N¿17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel¿Guillot¿Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10¿50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level.

Mots-clés Agrovoc : rendement des cultures, millet, Panicum miliaceum, changement climatique, sécheresse, modèle de simulation, grain, méthode statistique, application des ordinateurs

Mots-clés géographiques Agrovoc : Afrique occidentale, Sénégal, Mali, Niger

Classification Agris : F01 - Culture des plantes
U10 - Informatique, mathématiques et statistiques
P40 - Météorologie et climatologie

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Baron Christian, CIRAD-AMIS-UPR Modélisation intégrative (FRA)
  • Sultan Benjamin, Université Paris 6 (FRA)
  • Balme Maud, INPG (FRA)
  • Sarr Benoit, AGRHYMET (NER)
  • Traoré Seydou B., AGRHYMET (NER)
  • Lebel Thierry, INPG (FRA)
  • Janicot Serge, Université Paris 6 (FRA)
  • Dingkuhn Michaël, CIRAD-AMIS-UPR Modélisation intégrative (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/530286/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-29 ]