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Influence of cross section dimensions on Timoshenko’s shear factor 
– Application to wooden beams in free-free flexural vibration
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Abstract – This study was designed to examine the influence of the cross section height-to-width ratio on Timoshenko’s shear factor. This
factor was introduced to account for the irregular shear stress and shear strain distribution over the cross section. A new theoretical formulation
of the shear factor is thus proposed to assess rectangular cross sections of orthotropic material such as wood. Numerical simulations were
performed to examine shear factor variations with respect to the height-to-width ratio. The influence of the cross section size on the first five
flexural vibration frequencies is also discussed.

Timoshenko’s shear factor / flexural vibration / wood

Résumé – Influence des dimensions de la section transverse sur le facteur de cisaillement de Timoshenko. Applications aux poutres en
bois en vibration de flexion libre–libre. L’objectif de cette étude est d’examiner l’influence du ratio hauteur sur épaisseur de la section droite
sur le facteur de cisaillement de Timoshenko. Ce facteur est utilisé afin de prendre en compte le fait que les contraintes et les déformations de
cisaillement ne sont pas uniformément réparties dans la section droite. Une nouvelle formulation théorique du facteur de cisaillement est alors
proposée dans le cas d’une section droite rectangulaire pour un matériau orthotrope comme le bois. Des simulations numériques sont réalisées
de manière à examiner la variation du facteur de cisaillement en fonction du ratio hauteur sur épaisseur. L’influence de l’effet de dimension de
la section droite sur les cinq premières fréquences de vibration de flexion est également discutée.

facteur de cisaillement de Timoshenko / vibration de flexion / bois

1. INTRODUCTION

Free-free flexural vibration tests can be used to accurately
determine the elastic constants of wooden beams such as
Young’s modulus and the shear modulus [4]. The shear effect
and rotary inertia can be taken into account to extend the range
of applicability of the Euler-Bernoulli theory of beams [7].
These effects are incorporated in Timoshenko’s beam equation.
This formula has been the focus of considerable attention in the
literature, but few studies have investigated the validity range
of Timoshenko’s beam equation when the height/width ratio of
the cross section varies between that of a thin vibrating beam
to that of a thick vibrating plate. Cowper [2] derived
Timoshenko’s beam equation by integration of equations based
on the three-dimensional elasticity theory. A new shear factor
formula was proposed which integrates Poisson’s ratio for an
isotropic material but the cross section size effect was not taken
into consideration [2]. In this paper, a theoretical formulation
for the shear factor is proposed for orthotropic materials such
as wood with a rectangular cross section. This new theoretical
formulation includes relations based on the three-dimensional
elasticity theory and takes the size effect of the cross section

into account. Numerical shear factor values are calculated
according to variations in the height/width ratio of the cross sec-
tion. The influence of the cross section size effect on the first
five vibration frequencies is also discussed.

2. THEORETICAL FORMULATION

Let us consider an orthotropic and homogeneous beam in free-free
bending vibration. The governing equation of motion, as formulated
by Timoshenko [7] for an isotropic material, is as follows:

(1)

where Ex is the longitudinal modulus of elasticity, IGz the cross section
inertia, ρ the density, K the Timoshenko shear factor, GXY the shear
modulus, S the cross section area and v the particle motion on the axis
(OY). Equation (1) takes the effects of shear deflection and rotary iner-
tia into account. Coefficient K, which is a dimensionless quantity that
is dependent on the shape of the cross section, is introduced to account
for the irregular shear stress and shear strain distribution over the cross

* Corresponding author: loic.brancheriau@cirad.fr

EXIGz
∂4ν
∂x4
-------- ρ IGz 1

EX
KGXY
--------------+ 

  ∂4ν
∂x2∂t2
----------------

ρ2IGz
KGXY
--------------∂4ν

∂t4
-------- ρS∂4ν

∂t2
-------- 0=++–

Article published by EDP Sciences and available at http://www.edpsciences.org/forest or http://dx.doi.org/10.1051/forest:2006011

http://www.edpsciences.org/forest
http://dx.doi.org/10.1051/forest:2006011


320 L. Brancheriau

section [2]. Timoshenko [8] defined K as the ratio of the average shear
strain on a section to the shear strain at the centroid. The K value is
thus 2/3 for a beam with a rectangular cross section [8]. However, sev-
eral authors have proposed other K value estimates [2–4, 10] and the
consensus value seems to be 5/6 [11].

The K value for a rectangular cross section can be calculated con-
sidering the elementary work dw associated with the shear stress σxy
acting on a beam element of length dx [5]:

. (2)

Timoshenko [9], Lekhnitskii [6] and Laroze [5] developed theo-
retical formulations on the basis of a three-dimensional state of stress.
The shear stress distributions σxy and σxz are derived from the function
ϕ (y,z). In particular, it is shown that σxy could be written as (3) for a
rectangular cross section [9]:

. (3)

This function is commonly expressed in the form of a double Fou-
rier series. The expression of the function ϕ (y,z) is given by Timosh-
enko [9] and reformulated for an orthotropic material:

  (4)

where e is the width of the cross section. This last expression is math-
ematically correct but not easy to practically apply. A simplified for-
mula, based on an analogy with membrane material, could be proposed
when the height and width of the cross section are in the same scale [9]:

(5)
where P1 and P2 are two polynomials of the form:

  and 

. (6)

By deriving equation (5) and applying equation (3), the shear stress
σxy is thus expressed as:

. (7)

Formula (7) is used with equation (2) to obtain analytic expressions
of shear factor K* for an orthotropic and homogeneous material when
the dimensions of the cross section are in the same scale:

(8)

The difference between the shear factor K* calculated from the
exact expression (4) and from the simplified formula (5) is less than
2% when the ratio h/e ≥ 2 and it can be neglected when h/e is reaching
10. However, the difference is 6% when h/e is reaching 1/10.

3. NUMERICAL TRENDS FOR WOOD MATERIAL

Equation (8), as formulated above, can reveal trends in the
shear factor K* with variations in cross section dimensions. We
used common wood mechanical characteristic values to highli-
ght the shear factor patterns. The longitudinal modulus of elas-
ticity EX values were thus 14 000 MPa, the shear modulus GXY
values in the LT plane were 900 MPa and the Poisson’s ratio
νXZ values in the LR plane were 0.39. The K* values were plot-
ted when the height h to width e ratio of the cross section ranged
from 0.1 to 10 (Fig. 1). This variation range was fixed in com-
pliance with Timoshenko’s approximation criteria given in
equation (5).

Figure 1 shows that the shear factor value was practically
constant when the height was superior to the width of the cross
section. The wooden beam was thus tested edgewise and the
corresponding shear factor value was 5/6. However, when the
height was less than the width, the K* value decreased linearly
with the base 10 logarithm of the h/e ratio. The corresponding
K* value associated with h/e = 0.1 was 0.823 instead of the stan-
dard 0.833. In this case, the wooden beam was tested flatwise
and its mechanical behavior began to resemble that of a thick
plate. Nevertheless, the relative error |K* – K| / K remained very
low, with a maximum of 1.2%, when the width e was 10 times
superior to the height h. Furthermore, this relative error was
lower than the 6% bias between the exact and the simplified
expression of K*.

For a prismatic wooden beam in free–free transverse vibra-
tion, the eigenfrequencies can be deduced from equation (1)
using an approximation of Taylor-Lagrange [3]. The solution
given by Bordonné is thus presented [1]:

(9)
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Figure 1. Variations in the shear factor K* according to the base 10
logarithm of the h/e ratio.
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where fn is the vibration frequency of rank n, L the length of
the beam, Q = IGz/SL2, F1(m) = θ2(m) + 6θ(m), 

F2(m) = θ2(m) – 2θ(m),  and

, . The analytic formula of

equation (9) was used with the shear factor K* expression (8)
to evaluate the size effect of the cross section on the first five
vibration frequencies with a length-to-depth ratio of 10. Five
frequencies were chosen since Bordonné’s solution can only be
applied for length-to-depth ratios above 10 with respect to the
first five vibration modes [1]. Note also that for low length-to-
depth ratio values the shear effect on the vibration frequencies
is maximized and thus the size effect of the cross section is also
maximized (9).

Figure 2 shows variations in the relative error for the first
five vibration frequencies when comparing a calculation using
the standard K value and a calculation using a K* value based
on the variation in the cross section height-to-width ratio (from
0.1 to 10). The following expression was applied to plot error
variations on the basis of the above EX, GXY and νXZ values:

. (10)

The influence of variations in the cross section ratio on the
first five vibration frequencies can be neglected due to the fact
that their is a maximum error of –0.45% on the fifth frequency
when the ratio h/e is equal to 0.1 (Fig. 2). Note that the influence
of the cross section ratio increased with the frequency rank, in
agreement with the fact that the shear influence increases with
the rank. Equation (1) indeed implies that the particle motion
resembles a pure shear motion with a velocity quasi-equal
to   when the frequency reaches infinity.

4. CONCLUSION

Modal analysis of free–free flexural vibrations provides a
rapid and accurate means to determine the modulus of elasticity
and the shear modulus of wooden beams. The shear modulus
can thus be calculated using the shear factor that Timoshenko
included in his specific model of vibrating beams. This model
is an extension of the Euler-Bernoulli model because it takes
the shear effect and rotary inertia into account. The combined
effects of shear deformation and rotary inertia are indeed not
negligible when the length to height ratio of the beam is within
the 10 to 20 range.

In this case, the shear modulus can be accurately determined
by using the shear factor. The aim of our study was to gain fur-
ther insight into the effect of the cross section size on the shear
factor value. We propose a new theoretical shear factor formu-
lation for orthotropic material such as wood with a rectangular
cross section – it allows determination of the shear modulus
when the height to width ratio of the beam differs substantially
from unity. We highlighted numerical trends for wood mate-
rials, which showed that:

• The shear factor was practically constant and equal to 5/6
when the height was superior to the width of the cross section.

• The shear factor decreased when the height was less than
the width. However the bias between the calculated value and
the constant value of 5/6 remained very low, with a maximum
of 1.2% when the height to width ratio reached 0.1.

• The influence of cross section ratio variations on the first
five vibration frequencies was negligible, with a maximum bias
of –0.45% on the fifth frequency when the height to width ratio
reached 0.1.
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Figure 2. Variations in the relative error in vibration frequency cal-
culations according to the base 10 logarithm of the h/e ratio.
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