Passive capillary pan samplers: an efficient system to monitor in-situ percolation fluxes in soils.
System presentation and estimation of measurement uncertainties

J.-G. Lacas¹,², M. Voltz², P. Cattan³, X. Louchart²

1. CEMAGREF, UR Qualité des Eaux et Prévention des Pollutions, Lyon, France.
2. INRA, UMR L.I.S.A.H., Montpellier, France
3. CIRAD FLHOR, Capesterre Belle Eau, France
THE SCIENTIFIC CONTEXT:
Measurement of water and solutes percolation fluxes in the unsaturated zone of soils

Many interests in hydrology:

- groundwater recharge
- mass balance for a specific layer
- leaching hazard for chemical contaminants

[Diagram showing water flow through soil layers, with rootzone, unsaturated zone, groundwater, and contamination points.]
THE TECHNICAL CONTEXT:

Few field technics:

- Tensiometry
- Suction cups lysimeter
- Weighing lysimeter
- Zero tension pan sampler

Poorly representative measures:

- Local (spatial variability), C_{FLUX} needed, K-h needed (source of uncertainty)
- Local (spatial variability), $C_{RESIDENT}$, flow distortion, concentration effect.
- Soil destruction (stabilization period), flow pattern distortion, cost)
- $h=0 \Rightarrow$ undersampling (e≈50%), flow distortion (divergent flows)
PRESENTATION OF THE PASSIVE CAPILLARY SAMPLER

Typical design of a passive capillary sampler (PCAPS)

- Sample extraction and pressurisation tubes
- Unraveled fibers contacting soil
- Wick support
- Installation cavity
- Wick tubing
- Sample collection bottle

Collection depth [50cm-2m]
Hanging water-column [50cm-90cm]

Photography of a sampler during installation under a banana tree.

P. Cattan CIRAD
PRESENTATION OF THE PASSIVE CAPILLARY SAMPLER

Typical design of a passive capillary sampler (PCAPS)

Sample extraction and pressurisation tubes

Unraveled fibers contacting soil

Wick support

Installation cavity

Wick tubing

Sample collection bottle

Collection depth
[50cm-2m]

Hanging water-column
[50cm-90cm]

Photography of the sampling bottles and extraction tubes – lysimeter installed under a grassed zone.
Typical design of a passive capillary sampler (PCAPS)

- Sample extraction and pressurisation tubes
- Unraveled fibers contacting soil
- Wick support
- Installation cavity
- Wick tubing
- Sample collection bottle

Collection depth
[50cm-2m]

Hanging water-column
[50cm-90cm]

Photography of a wick lysimeter with two cells before installation – unraveled fibers
PRESENTATION OF THE PASSIVE CAPILLARY SAMPLER

Typical design of a passive capillary sampler (PCAPS)

- Sample extraction and pressurisation tubes
- Unraveled fibers contacting soil
- Wick support
- Installation cavity
- Wick tubing
- Sample collection bottle

Collection depth [50cm-2m]

Hanging water-column [50cm-90cm]

Photography of the lysimeter in contact with the overlying soil – the collector is pressed into the soil by wood blocks
Typical pressure head profiles within a fiberglass wick under different soil flux intensities.

Suction exerted on the overlying soil by a 100cm long wick

- Soil flux:
 - $q_s = 0.1 \text{ cm/h}$
 - $q_s = 0.01 \text{ cm/h}$
 - $q_s = 0.001 \text{ cm/h}$

- Wick conductivity: $K_{sat} = 460 \text{ cm/h}$

- Collection area: 227 cm2

- Wick area: 0.7 cm2
CARACTERISTICS OF THE PCAPS MEASURE

- Unsaturated and saturated fluxes (macropores and matrix)
- Non-disturbed soil volume
- Significant area (typic. 900cm²).
- No divergent flows
- Continuous sampling
- Non sorbing material
- No additional delay nor dispersion in solute breakthrough
- Well suited for field studies (no external vacuum generator needed, cheap materials)

Very representative measurement of leaching (e≈100%)
EXAMPLE OF MEASUREMENTS (Guadeloupe)

Flux from 17-Sep-2001 10:30:00 to 14-Dec-2001 08:20:00

- Rainfall (mm/day)
- Water flux (mm/day)
- Cadusafos conc. (µg/L)

Graphs showing:
- Wick lysimeter
- Zero tension lysimeter

EXAMPLE OF MEASUREMENTS (Guadeloupe)
In order to achieve a minimal disturbance of the native flow regime, the wick material, wick length, wick number and the collection area have to be dimensioned so that the "soil pressure vs. flow" conditions of the wick match those of the soil.

Analytical equations have been proposed in the literature:

- Holder et al. (1991)

\[\text{number of wicks} = \frac{K_{s\text{soil}} \times \text{Plate area}}{K_{s\text{wick}} \times \text{Wick area}} \]

- Knutson and Selker (1994)

\[h_s = \frac{1}{a_s} \ln \left(\frac{-q_s}{K_{sat}} \right) \]
\[K(h) = K_s \cdot e^{ah} \]
\[h_{\text{wick}} = \frac{1}{a_w} \ln \left[\exp(a_w L_w) \left(q_s \frac{A_s}{A_w K_{wsat}} + 1 \right) - \left(q_s \frac{A_s}{A_w K_{wsat}} \right) \right] \]
QUESTION OF MEASUREMENT UNCERTAINTY:

PCAPS are widely used to determine percolation fluxes...
but there isn’t any data on the measurement uncertainty.

Two main sources of errors:

- Theoretical hypothesis underlying the analytical equations proposed by Knutson and Selker (1994) to dimension PCAPS.

 \textit{(unit gradient in soil, permanent flow, 1D flow, Gardner model)}

- Experimental errors associated to parameters used for dimensioning or associated to the PCAPS installation procedure in field.

 \textit{(soil Ks, wick Ks, wick length, effective collection area…)}
We used the Hydrus 2D code (Simunek et al., 1999), solving the Richards equation without hypothesis for simulating two-dimensional unsaturated flow, to analyze the deviations of a soil-instrumented system in comparison to an undisturbed system, in realistic conditions.
• no significant bias on the wick-extracted volumes with Ida Silt Loam (2%)

• The small bias observed with Rehovot Sand (19%) is due to the fact that soil and wick properties couldn’t be perfectly matched.

Comparison of cumulated fluxes in both wick and reference systems during the 11 days simulation:

- Ida Silt Loam + Amatex 3/8
- Rehovot Sand + Pepperell 1/2

Graph:

- \(y = 1.0629x \) with \(R^2 = 0.9986 \)
- \(y = 1.1973x \) with \(R^2 = 0.9914 \)
• However, the bias can be significant for short time scale measurements

Temporal variations of bias in the (Ida Silt Loam + Amatex 3/8in. Wick) system
• The typical uncertainties about the hydraulic properties of both soil and wick materials can induce large deviations of wick-extracted volumes.
An error made on the wick length can have a large impact on extracted volumes

Wick length impact on total extracted volumes

- Ida Silt Loam + AM3/8MD
- Rehovot Sand + PEP1/2
CONCLUSIONS

• PCAPS are attractive systems that permit a representative measurement of in-situ leaching fluxes (C_{FLUX} and water flux) in the unsaturated zone.

• The hydraulic conductivities of both soil and wick must be measured accurately to have a reliable estimation of flux. Attention should also be taken at the wick length.

• Analytical methods proposed in the litterature to dimension the lysimeter are relevant for Gardner type soils and large time-scale measurement

• A 2D numerical simulation approach should be used in most cases to accurately evaluate the PCAPS efficiency and the measurement bias. It allows to post-correct measured percolation fluxes
Thank you!