Bacterial antibioresistance: its implication in Better Management Practices

Dr Samira SARTER
CIRAD
Bacterial antibioresistance: its implication in Better Management Practices

- Resistance to antibiotics
- Bacterial adaptation
- Antibioresistance in catfish (Vietnam)
- Better Management Practices
- Research perspectives
Bacterial antibioresistance: its implication in Better Management Practices

Collaborators:
Sarter S., H.N.K. Nguyena, L.T. Hunga, J.Lazardb, D.Montetb. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food control 2007, 18, 1391–1396

a: Faculty of Fisheries, University of Agriculture and Forestry (UAF), Ho Chi Minh city, Vietnam

b: Cirad France
Resistance to antibiotics

- One of the major public health problems (WHO)
- International spread of microorganisms
- It is a global problem and requires a common strategy
Resistance to antibiotics

- Difference between antibiotic residues and antibiotic resistance

- Even when treatment is suspended before the fish is sold for consumption, the resistance can still be transmitted
Resistance to antibiotics

- All antimicrobial drugs can select microorganisms that are resistant

- Impact of farming practices extends beyond the individual farm environment
Resistance to antibiotics

- Once acquired, resistance determinants could be maintained within the bacterial population even in the absence of the corresponding antibiotic
Resistance to antibiotics

- Interaction between different ecological systems

- Potential transfer of resistant bacteria or resistant genes from animals to humans may occur through the food chain
Resistance to antibiotics

- Antibiotic-resistant bacteria have been isolated from the carcasses of catfish from the retail market

- Transfer during food preparation at home or by handling in the market
Resistance to antibiotics

Microbiological definition

Bacteria that possess a mechanism conferring them a Minimum (antimicrobial) Inhibitory Concentration (MIC) greater than the wild strain
Survive in the presence of higher concentrations of an antimicrobial agent than the members of the parental population from which it emerged.
Resistance to antibiotics

- The lowest concentration of an antibiotic which will inhibit the growth of a particular microbe
- The MIC is an inverse measure of sensitivity; the lower the MIC value of the antibiotic, the greater sensitivity of the bacterium
- The larger the zone diameter, the lower the MIC
Resistance to antibiotics

- Small farmers
- Low technical knowledge
- Open market
- Wide range of commercial products
- Quality guaranty
- Insufficient health support and diagnosis services
Resistance to antibiotics

- Under-regulation or insufficient enforcement
- Excessive and inappropriate use of antimicrobials
Resistance to antibiotics

- *Campylobacter sp.*, *Klebsiella pneumoniae*, *Salmonella sp.*, *Pseudomonas aeruginosa*,
- *Aeromonas hydrophila*, *A. salmonicida*, *Edwardsiella tarda*, *E. icttaluri*, *Vibrio anguillarum*, *V. salmonicida*, *Pasteurella piscida* and *Yersinia ruckeri*
Bacterial adaptation

- Inhibitors of protein synthesis
 - tetracyclines; aminoglycosides; chloramphenicol; florfenicol; macrolides; spectinomycin; lincosamides.
Bacterial adaptation

- Inhibitors of DNA function

- nalidixic acid; ofloxacin; metronidazole; rifampin; enrofloxacin; sarafloxacin
Bacterial adaptation

- Inhibitors of folic acid synthesis (folic acid is needed to make RNA and DNA for growth and multiplication, and bacteria must synthesize it)
 - sulphonamides; sulfasalazine; trimethoprim; co-trimoxazole.
Bacterial adaptation

- Inhibitors of bacterial cell wall synthesis
 - penicillins; aminopenicillins; cephalosporins; vancomycin.
Bacterial adaptation

- Adaptation of bacteria to fluctuating antibiotic environment
- Multipurpose or multiple mechanisms of survival
- Associated-resistance mechanisms
Bacterial adaptation

Particular resistance profiles without a direct use of the corresponding drugs by the farmer
Bacterial adaptation

- Multi-efflux pumps in *E. coli* (AcrAB efflux system) for TE, C, AM, NA

- Alteration in outer membrane proteins of OA-resistant mutant benefit to TE, C and some β-lactams
Bacterial adaptation

- Intrinsic resistance:
 - enzymes (β-lactamase)
 - impermeability of the membrane
 - absence of the target in the cell
- Acquired resistance
Bacterial adaptation

- Mobile genetic elements encoding for resistance: plasmids, transposons, integrons
- New gene combination
- Important role in horizontal transfer and spread of resistance
Bacterial adaptation

- Plasmids and integrons encoding for resistance to tetracycline, chloramphenicol, sulphonamide, trimethoprim and β-lactamases have been reported in fish bacteria
Bacterial adaptation

- plasmid carrying the *qnr* gene, which confers resistance to quinolone was found in Gram-negative microorganisms (*Klebsiella pneumoniae* and *Escherichia coli*)
Bacterial adaptation

- The alteration in outer membrane proteins of OA-resistant mutants could benefit to TE, C and some β-lactams
Bacterial adaptation

- the expression of an outer membrane protein (OMP54) in *Stenotrophomonas maltophilia* was associated with an increase of the MIC for TE, C and quinolones, but not for β-lactams
Bacterial adaptation

- Associated-resistance has been reported for:
 - S-SXT in *Enterobacteriaceae*
 - OA-OTC in *Aeromonas salmonicida*
 - AM-OTC in Gram-negative bacteria from cultured catfish
 - OTC-SXT in *Aeromonas salmonicida*
Bacterial adaptation

In response to a fluctuating antibiotic environment bacteria optimises its resistance system towards multiple drugs to survive

1- Oxytetracycline OTC
2- Chloramphenicol C
3- Trimethoprim- Sulphamethoxazol SXT
4- Nitrofurantoin FT
5- Nalidixic acid NA
6- Ampicillin AM
Better Management Practices

- Health management practices
- Optimal environment
- Bacterial infections
 - Animal health
 - Economic losses
- Antibiotic cover (responsibly)
Better Management Practices

- Drug resistance monitoring
 - Optimal use
 - Better management

- Evaluation of the benefits and risks
 - Collecting detailed information about their use in aquaculture
Better Management Practices

- For routine susceptibility testing
 - Disc diffusion technique
 qualitative or semi-quantitative
 - Liquid medium dilution technique
 quantitative
Better Management Practices

Sensible
Résistante
Intermédiaire
Better Management Practices

- Liquid medium dilution technique:
 - Expensive and time consuming test
 - Only done when a few organisms must be tested or when accurate MIC estimation is needed
Better Management Practices

- Significant component of production costs
- Economic reason driving the search for alternative disease control strategies
- The larger and more sophisticated fish farming
Research perspectives

- Better understanding and control of antimicrobial resistance
- Research for alternatives
Research perspectives

- Evaluation of antimicrobial peptide in fish farming in France (Ifremer-Cirad project funded by the ANR 2006-07)
 - penaeidin
 - broad activity spectrum
 - *Dicentrachus labrax*
Research perspectives

- Evaluation of essential oils in shrimp farming in Madagascar (collaboration with URP Forest and Biodiversity funded by the French cooperation 2004-07)
 - endemic plant
 - chemical composition
 - antimicrobial activity
 - *Penaeus monodon*