Assessing the potential of microsatellite markers to infer origin and movements of locust swarms: the case studies of *L. migratoria* in Madagascar and *C. terminifera* in Australia

Chapuis MP, Loiseau A, Popple JA, Michalakis Y, Lecoq M, Franc A, McCulloch L, Simpson S, Estoup AE, Sword G

Introduction

Locusta migratoria in Madagascar

Remissions: 1-100 individuals/hectare

Introduction

Chortoicetes terminifera in Australia

Introduction

Preventative control strategy

Malagasy National Anti-Locust Center (CNA) Australian Plague Locust Commission (APLC)

- monitoring locust populations (locust surveys and light trap information)
- forecasting (meteorological, habitat, and density data)
- early controls (chemical and biological)
- research

Need for a better understanding of the spatial population dynamics in the early outbreak stage

- limits of direct ecological approaches because of the great dispersal ability of locusts
- population genetics may be an useful alternative

WHAT IS THE POTENTIAL OF APPLICATION OF POPULATION GENETICS TO THE MANAGEMENT OF SWARMING LOCUSTS?

The genetic approaches might lack resolution for low genetic differentiation among populations

- Demographic effect = outbreaking populations experience demographic flushes
- → large number of effective migrants

- Behavioural effect = outbreaking insects travel together in migratory bands of nymphs and fly large distances in swarms of adults
- → large effective migration rate and distance

L. migratoria in Madagascar

M&M - Microsatellite markers

Presence of null alleles

L. migratoria in Madagascar →

from 32 loci, 47% excluded by pre-testing from 14 remaining loci, 13% of null alleles

C. terminifera in Australia →

from 33 loci, 59% excluded by pre-testing from 10 remaining loci, 22% of null alleles

Presence of null alleles - HOW DO I ANALYSE DATA?

- Null alleles bias
- Efficiency of the method for correcting genotype datasets
 INA correction ->

Estimating null allele frequency \hat{r}

Allocating a single new allele state common to all genotyped populations

Adjusting allele and genotype frequencies based on \hat{r}

Presence of null alleles

Traditionnaly used estimator of genetic variation among populations F_{ST} (Weir 1996)

Number of migrants per generation

INA correction

ENA correction

Estimating F_{ST} by excluding null allele state

→ FreeNA software

http://www.montpellier.inra.fr/URLB/

Presence of null alleles

Delineating clusters of population samples: BAPS (Corander et al. 2003)

^{*} Global and pairwise tests of genotypic differentiation all non significant

Comparative study in L. migratoria

→ absence or low levels of genetic differentiation are partly associated with outbreaks

- Value per locus
- Value for the 14 loci

Homogenizing effect of outbreaks at a wide scale

> Lack of resolution to detect migrants and infer their origin

Perspectives

- → integrating other type of data, such as demographic, behavioural, or environmental data
- → use of genetic linkage disequilibrium information (e.g. Bayesian methods of Gaggiotti et al. 2002, 2004)

Thank you for your attention