Modélisation bioéconomique dans la région du lac de Guiers
3 : Typologie des systèmes de production

Samba Fall et Grégoire Leclerc

Janvier 2007
Centre de Coopération Internationale de Recherches Agronomiques pour le Développement

(CIRAD)

Projet de recherche DOMINO

Modélisation bioéconomique dans la région du lac de Guiers

3 : Impact des prévisions météorologiques sur les stratégies paysannes

Seynabou Diouf, Samba Fall, Bruno Barbier et Grégoire Leclerc
Sommaire

Introduction : ... 4
Problématique : ... 4
Objectifs de l’étude : .. 2
Méthodologie de recherche : .. 2

I-Présentation de la zone : ... 3
 I-1 Situation géographique : .. 3
 I-2 Climat : ... 3
 I-3 Géomorphologie : ... 3
 I-4 Pédologie : .. 3
 I-5 Population et activités socio économiques : ... 3

II-Description des fermes : ... 4
 II-1 La ferme Rente-Elevage sédentaire.. 4
 II-1-1 Note sur les données économiques : ... 6
 II-2 La ferme vivrière-Elevage sédentaire ... 9

III-Présentation du logiciel GAMS et littérature sur la notion de modèle : .. 10

IV-Le modèle bioéconomique de la région du lac de guiers .. 11
 IV-1 Description du modèle dans GAMS : ... 12
 IV-1-1 Les données et l’étalonnage des paramètres : .. 13
 IV-1-3 Les VARIABLES : .. 14
 IV-1-4 Les EQUATIONS : .. 15
 IV-1-5-Explication des équations : .. 15

V-Analyse des sorties du modèle .. 17
 V-1 Scénarios de prévision (Q0, Q1, Q2, Q3, Q4) .. 17
 V-2 Ferme rente élevage sédentaire : .. 17
 V-2-1 Choix des cultures (surfaces et revenus potentiels) selon les scénarii de prévision météorologique 17
 V-2-2: Impact de la prévision sur le revenu et l’état de la nature ... 18
 V- 2-3: Impact de la prévision sur l’autoconsommation, les ventes et les achats, selon l’état de la nature : .. 20
 V- 2-4: Intérêt économique de la prévision .. 20
 V-2-5 Scénarios sur l’aversion au risque (revenu minimum) ... 21
 V-2-6 Valeur marginale du travail et de la terre : .. 21
 V-3 Ferme vivrière élevage sédentaire : ... 23
 V-3-1 choix des cultures (surfaces et revenus potentiels) selon les scénarii de prévision 23
 V-3-2 Impact de la prévision sur le revenu et l’état de la nature : .. 23
 V-3-3 Impact de la prévision sur l’autoconsommation, les ventes et les achats selon l’état de la nature : .. 25
 V-3-4 Intérêt économique de la prévision : ... 25
 V-3-5 : Valeur marginale de la terre et du travail : ... 26

Conclusion : ... 27
Liste des figures:

Figure 1: Répartition des charges d’exploitation ... 5
Figure 2: Revenu tiré des différents secteurs d’activité (FALL, 2006) 6
Figure 3: Répartition des charges d’exploitation de la ferme vivrière élevage sédentaire (Fall, 2006) 9
Figure 4: Revenu des différents secteurs d’activité de la ferme vivrière élevage sédentaire 10
Figure 5: Nature des cultures emblavées, type de sol et zone adaptés pour la ferme « rente élevage sédentaire » ... 18
Figure 6: Revenus potentiels selon l’état de la nature pour la ferme « rente élevage sédentaire » 18
Figure 7: Revenus potentiels pour la ferme « rente élevage sédentaire » 19
Figure 8: Valeur marginale de la terre pour la ferme rente élevage sédentaire 22
Figure 9: Nature des cultures emblavées, type de sol et zone adaptés pour la ferme « vivrière élevage sédentaire » ... 23
Figure 10: Revenus potentiels selon l’état de la nature pour la ferme « vivrière élevage sédentaire » 24
Figure 11: Revenus potentiels pour la ferme « vivrière élevage sédentaire » 24
Figure 12: Valeur marginale de la terre pour la ferme vivrière élevage sédentaire 26

Liste des tableaux:

Tableau 1 : Moyenne des prix de vente des produits agricoles .. 6
Tableau 2 : Rendement des différentes cultures selon la zone, l’état de la nature et la saison 7
Tableau 3 : Calcul du coût de la production ... 8
Tableau 4 : Temps de travaux au champ pour chaque culture .. 8
Tableau 5 : Scénarii de prévision .. 17
Tableau 6 : Intérêt de la prévision pour la ferme rente élevage sédentaire 20
Tableau 7 : Valeur marginale du travail pour la ferme rente élevage sédentaire 22
Tableau 8 : Intérêt de la prévision .. 25
Tableau 9 : Valeur marginale du travail pour la ferme vivrière élevage sédentaire 26
MODELE BIOECONOMIQUE DES FERMES DE LA REGION DU LAC DE GUIERS
ET IMPACT DES PREVISIONS METEORLOGIQUES

Introduction :
Quelles contraintes limitent l’adoption d’une nouvelle technologie? Quelles technologies ont les meilleures chances d’être adoptées? Et quels changements sont associés à cette adoption? Pour répondre à ces questions, il est souvent utile de développer un modèle quantitatif capable de représenter une exploitation ou un ensemble d’exploitations.
L’objet de cette étude est de construire un modèle bioéconomique des fermes de la région du lac de Guiers et d’étudier l’impact des prévisions météorologiques sur la production et le revenu de manière générale.
Dans un premier temps nous essayerons de caractériser la zone d’étude, ensuite nous tenterons de faire une brève présentation du logiciel utilisé ; une série de scénarios et analyse des sorties du modèle s’en suivront.

Problématique :
La prévision saisonnière devrait permettre aux producteurs de connaître à l’avance selon l’état de la nature sur quel type de sol cultivé, quelles spéculations mettre en place et avec quelles méthodes. La pluviométrie est faible dans la région du lac de Guiers. Elle atteint rarement 300 mm et inégalement répartie dans le temps et dans l’espace.
Dans la zone cible, on retrouve deux entités géomorphologiques que sont le walo et le dieri. Les sols du dieri sont caractérisés par une importante proportion de sable qui varie selon les secteurs. Les sols du walo sont les sols traditionnellement inondés par la crue des lacs et des terres qui bordent la Taouey. A chaque type de sol correspond un type de culture donnée et
selon la variabilité du climat les rendements varient. Les producteurs de cette zone ont la
chance de pouvoir faire de l’irrigation mais ce dernier nécessite des financements qui ne sont
pas le souvent à la portée de toutes les bourses. Ainsi si le paysan avait la possibilité de
connaître à l’avance quelle pourrait être la nature de la saison il aurait la chance d’augmenter
son revenu. Mais quel est le coût du risque chez le paysan si la météo venait à se tromper ?
Quelle est la valeur ajoutée sur le revenu que le paysan pouvait bénéficier s’il était renseigné
au préalable ?
Quelles sont les propositions du modèle sur la nature des cultures à faire et sur le type de sol à
embraver selon la prévision climatique ?
Toutes ces questions seront éclaircies avec le logiciel GAMS à l’aide de scénarios qui nous
permettront de dégager des perspectives.

Objectifs de l’étude :
L’étude a deux principaux objectifs :

➢ Construire un modèle bioéconomique des fermes de la région du lac de Guiers
➢ Etudier l’impact des prévisions météorologiques

Ce double objectif se fera à travers les activités suivantes :

➢ programmation et documentation du modèle bioéconomique de l’exploitation sous
 GAMS
➢ Entretien avec les paysans
➢ Scénarisation et analyse des sorties du modèle

Méthodologie de recherche :
Une recherche bibliographique a été effectuée, elle nous a permis de connaître dans les détails
les données éco-climatiques et socio-économiques de la zone d’intervention. Elle a eu pour
cadre le Laboratoire d’Enseignement et de Recherche en Géomatique (LERG).
Des entretiens ont concerné des chefs de secteurs de la SAED, des producteurs et des
spécialistes des différents domaines d’intervention. Un guide d’entretien a été élaboré à cet
effet. Il a permis d’apprécier l’avis des producteurs sur certaines exigences du modèle.
Un questionnaire a aussi été administré pour confirmer des données de même nature recueillies dans le
cadre d’un projet similaire.
I-Présentation de la zone :

I-1 Situation géographique :

I-2 Climat :
Elle appartient du point de vue climatique à la zone sahélienne caractérisée par une alternance d’une longue saison sèche allant d’octobre à Juin et une courte saison des pluies appelé hivermage entre Juillet et Septembre. La pluviométrie est faible, elle atteint rarement 300 mm et inégalement répartie dans le temps et dans l’espace. Le régime des vents est important à considérer par ses effets de dessèchement, d’arrachement et de transport de matériaux.

I-3 Géomorphologie :
L’évolution géomorphologique au quaternaire a fortement marqué la pédogenèse dans toute la vallée du fleuve Sénégal. Dans la zone deux entités géomorphologiques marque le paysage : le walo et le diéri.

I-4 Pédologie :

I-5 Population et activités socio économiques :
Les wolofs constituent l’ethnicité dominant suivi des peuls et des maures. Les activités traditionnelles sont constituées de la culture de décrue qui est une activité ancienne mais de nos jours elle est de plus en plus compromise. Les principales spéculations sont la tomate, la patate douce, le melon, le mil, le sorgho entres autres. La présence de barrages qui régule le niveau de l’eau empêche cette activité de se développer. Elle est de plus en plus abandonnée (DIOP, 2006).
L’élevage est la deuxième activité après l’agriculture. Les acteurs sont des éleveurs exclusifs, c’est une activité extensive par excellence.

La pêche lacustre s’exerce comme activité d’appoint pratiqué par les walo walo. De nos jours, elle est de plus en plus ralentie du fait de l’inadaptation des engins et par l’envahissement de la surface lacustre par la végétation aquatique en l’occurrence Typha australis qui devient une véritable zone de refuge pour les poissons (DIOP, 2006).

Le lac de Guiers assure aussi l’adduction d’eau potable de Richard Toll, il est utilisé comme réservoir d’eau douce pour Dakar.

Une étude antérieure menée par FAAll, 2006 a permis d’identifier seize systèmes de production dans la zone du lac de Guiers. Ces systèmes ont été divisés en trois classes :

— Le système de production agricole constitué du système de production vivrier et celui de rente

— Le système de production pastorale réparti en système d’élevage sédentaire et transhumant

— Le système de production halieutique constitué seulement de la pêche artisanale dans la zone

Ainsi onze fermes ont été identifiées à travers le croisement des différents systèmes de production. Nous considérerons dans un premier les producteurs qui font comme activité l’agriculture de rente et l’élevage sédentaire.

II-Description des fermes:

II-1 La ferme Rente-Elevage sédentaire

représente la plus grande place avec 41 %. Par contre, la pastèque et l’arachide occupent 27 % et 23 % des emblavures en hivernage.

La main d’œuvre est constituée d’ouvriers salariés avec un total de 11 UTH, la main d’œuvre disponible en ménage est très peu et fait moins de 2 UTH. Le nombre d’actif a été évalué en UTH avec 1 femme=0,8 UTH ; 1 homme=1 UTH.

En période hivernale, l’arachide, le mil, le niébé et le jaxatu ont respectivement par ordre décroissant les meilleures productions. La production de contre saison est constituée majoritairement de la patate douce et en proportions sensiblement égales de la tomate de l’oignon et du batanse (aubergine).

En bonne année de production, la marge brute peut atteindre jusqu’à 1650000FCFA, les charges étant moindres, en mauvaise année de production le revenu n’excède pas 1050000FCFA. Les charges liées à l’irrigation sont plus importantes (FALL, 2006).

Figure 1: Répartition des charges d’exploitation

Le système d’élevage est de type sédentaire avec en moyenne un total de 5 UBT par chef d’exploitation réparti comme suit : 2 UBT respectivement pour les bovins et les ovins et de 1 UBT pour les caprins. Le revenus de l’élevage sont plus importants chez les ovins avec une somme de 134 167 FCFA suivi des bovins et caprins. L’élevage étant une activité secondaire, il permet aux producteurs d’acquérir un certain revenu d’appoint non négligeable qui peut aider à financer une bonne partie des charges agricoles.
II-1-1 Note sur les données économiques :
Le tableau ci-dessous présente les moyennes des prix de vente des produits agricoles dans la zone suivant la nature de la saison et suivant le type de saison. D’après les théories microéconomiques sur l’offre et la demande sur le marché, les prix varient disproportionnellement à l’évolution de la quantité.

Tableau 1 : Moyenne des prix de vente des produits agricoles

<table>
<thead>
<tr>
<th></th>
<th>Hivernage</th>
<th></th>
<th>Contre saison</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bonne saison</td>
<td>Moyenne et mauvaise saison</td>
<td>Bonne saison</td>
<td>Moyenne et mauvaise saison</td>
</tr>
<tr>
<td>Cultures</td>
<td>Bord champ</td>
<td>Marché local</td>
<td>Bord champ</td>
<td>Marché local</td>
</tr>
<tr>
<td>s1.n1.l1</td>
<td>s1.n1.l2</td>
<td>s1.n2*n3.l1</td>
<td>s1.n2*n3.l2</td>
<td>s2.n1.l1</td>
</tr>
<tr>
<td>Arachide</td>
<td>100</td>
<td>125</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>Mil</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Niébé</td>
<td>150</td>
<td>200</td>
<td>225</td>
<td>250</td>
</tr>
<tr>
<td>Sorgho</td>
<td>150</td>
<td>200</td>
<td>225</td>
<td>300</td>
</tr>
<tr>
<td>Pastèque</td>
<td>20</td>
<td>25</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Beref</td>
<td>30</td>
<td>150</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Manioc</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Bissap</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Tomate</td>
<td>60</td>
<td>65</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Patate</td>
<td></td>
<td></td>
<td>45</td>
<td>190</td>
</tr>
<tr>
<td>Oignon</td>
<td></td>
<td></td>
<td>400</td>
<td>525</td>
</tr>
<tr>
<td>Gombo</td>
<td>200</td>
<td>300</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>Riz</td>
<td>80</td>
<td>110</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>Jaxatu</td>
<td></td>
<td></td>
<td>160</td>
<td>195</td>
</tr>
<tr>
<td>Batanse</td>
<td></td>
<td></td>
<td>125</td>
<td>200</td>
</tr>
<tr>
<td>Choux</td>
<td></td>
<td></td>
<td>165</td>
<td>250</td>
</tr>
<tr>
<td>Piment</td>
<td></td>
<td></td>
<td>125</td>
<td>165</td>
</tr>
</tbody>
</table>
s1 : saison hivernale ; s2 : contre saison ; l1 : vente bord champ ; l2 : vente marché local ;
n1 : bonne saison ; n2 : moyenne saison ; n3 : mauvaise saison ;

Les rendements varient selon la nature de la saison. Ils diminuent naturellement quand la
saison est mauvaise et moins en contre saison où l’agriculture se fait en condition irriguée.

| Tableau 2 : Rendement des différentes cultures selon la zone, l’état de la nature et la
saison |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Saison hivernale (s1)</td>
</tr>
<tr>
<td>Bonne saison (n1)</td>
</tr>
<tr>
<td>Moyenne saison (n2)</td>
</tr>
<tr>
<td>Mauvaise saison (n3)</td>
</tr>
<tr>
<td>Contre saison (s2)</td>
</tr>
<tr>
<td>Bonne saison (n1)</td>
</tr>
<tr>
<td>Moyenne saison (n2)</td>
</tr>
<tr>
<td>Mauvaise saison (n3)</td>
</tr>
<tr>
<td>Cultures</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Arachide.wa</td>
</tr>
<tr>
<td>Arachide.di</td>
</tr>
<tr>
<td>Mil.wa</td>
</tr>
<tr>
<td>Mil.di</td>
</tr>
<tr>
<td>Nibéé.wa</td>
</tr>
<tr>
<td>Nibéé.di</td>
</tr>
<tr>
<td>Sorgho.wa</td>
</tr>
<tr>
<td>Sorgho.Di</td>
</tr>
<tr>
<td>Pastèque.wa</td>
</tr>
<tr>
<td>Pastèque.di</td>
</tr>
<tr>
<td>Beref.wa</td>
</tr>
<tr>
<td>Beref.di</td>
</tr>
<tr>
<td>Manioc.wa</td>
</tr>
<tr>
<td>Manioc.di</td>
</tr>
<tr>
<td>Bissap.wa</td>
</tr>
<tr>
<td>Bissap.di</td>
</tr>
<tr>
<td>Tomate.wa</td>
</tr>
<tr>
<td>Tomate.di</td>
</tr>
<tr>
<td>Patate.wa</td>
</tr>
<tr>
<td>Patate.di</td>
</tr>
<tr>
<td>Oignon.wa</td>
</tr>
<tr>
<td>Oignon.di</td>
</tr>
<tr>
<td>Gombo.wa</td>
</tr>
<tr>
<td>Gombo.di</td>
</tr>
<tr>
<td>Riz.wa</td>
</tr>
<tr>
<td>Riz .di</td>
</tr>
<tr>
<td>Jaxatu.wa</td>
</tr>
<tr>
<td>Batanse.wa</td>
</tr>
<tr>
<td>Chou.wa</td>
</tr>
<tr>
<td>Chou.di</td>
</tr>
</tbody>
</table>
Les charges liées à l’irrigation sont très importantes et plus en cette période de hausse du prix du gasoil. Peu de producteurs utilisent des produits phytosanitaires.

Tableau 3: Calcul du coût de la production

<table>
<thead>
<tr>
<th>SAISONS</th>
<th>Intrants</th>
<th>Produits phytosanitaires</th>
<th>Irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saison hivernale (s1)</td>
<td>Contre Saison (s2)</td>
<td>Saison hivernale (s1)</td>
</tr>
<tr>
<td>Arachide</td>
<td>4712</td>
<td>20668</td>
<td>1000</td>
</tr>
<tr>
<td>Mil</td>
<td>663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niébé</td>
<td>1966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorgho</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastèque</td>
<td>9000</td>
<td>16000</td>
<td>1200</td>
</tr>
<tr>
<td>Bref</td>
<td>618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manioc</td>
<td>5198</td>
<td>10550</td>
<td>300</td>
</tr>
<tr>
<td>Bissap</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomate</td>
<td>2168</td>
<td>20000</td>
<td>3500</td>
</tr>
<tr>
<td>Patate</td>
<td>45000</td>
<td></td>
<td>30000</td>
</tr>
<tr>
<td>Oignon</td>
<td>9114</td>
<td>86000</td>
<td>3500</td>
</tr>
<tr>
<td>Gombo</td>
<td>1631</td>
<td>48000</td>
<td>500</td>
</tr>
<tr>
<td>Riz</td>
<td>4718</td>
<td>20000</td>
<td>1000</td>
</tr>
<tr>
<td>Jaxatu</td>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batanse</td>
<td>27000</td>
<td>50000</td>
<td>500</td>
</tr>
<tr>
<td>Choux</td>
<td>11000</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Piment</td>
<td>12000</td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

Tableau 4: Temps de travaux au champ pour chaque culture

<table>
<thead>
<tr>
<th>Saisons</th>
<th>Saison hivernale (s1)</th>
<th>Contre saison (s2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Période de culture</td>
<td>Installation (p1)</td>
<td>Entretien (p2)</td>
</tr>
<tr>
<td>Arachide</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Mil</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Niébé</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>Sorgho</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Pastèque</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Bref</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Manioc</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>Bissap</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Les temps de travaux ont été élaborés sur la base du type de saison et des périodes de production les plus déterminantes.

II-2 La ferme vivrière-Elevage sédentaire

Avec une moyenne de 5,43 ha (96,67 % en pluvial), le mil et le niébé occupent respectivement 40% et 26% des emblavures. La pastèque s’en suit (10%) puis le beref (10 %) et l’arachide (7°%). Le reste est constitué de la tomate, chou, oignon, gombo, riz, jaxatu, batanse manioc, bissap en petites portions.

<table>
<thead>
<tr>
<th>Produit</th>
<th>Tomate</th>
<th>Patate</th>
<th>Oignon</th>
<th>Gombo</th>
<th>Riz</th>
<th>Jaxatu</th>
<th>Batanse</th>
<th>Choux</th>
<th>Piment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuité</td>
<td>55</td>
<td>30</td>
<td>55</td>
<td>20</td>
<td>40</td>
<td>45</td>
<td>60</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Charges</td>
<td>30</td>
<td>65</td>
<td>45</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Contrairement à la ferme rente élevage sédentaire, les semences constituent l’essentiel des charges. Il n’y a pas de charges liées à la main d’œuvre extérieure ni à l’irrigation. La main d’œuvre est essentiellement familiale. L’essentiel de la production est de type vivrier, la majeure partie est destinée à la consommation.
Figure 4: Revenu des différents secteurs d’activité de la ferme vivrière élevage sédentaire

Les ovins constituent l’essentiel du troupeau avec un total de 4 UBT. L’agriculture est la principale source de revenus. L'élevage reste la deuxième et est la plus importante en mauvaise année.

Toutes les données relatives aux coûts de production, aux prix des produits agricoles, aux temps de travaux et aux rendements des différentes cultures ont été les mêmes que ceux établis précédemment dans la « ferme rente élevage sédentaire ».

III-Présentation du logiciel GAMS et littérature sur la notion de modèle:

Les modèles servent de récipient pour nos données du terrain, ces données exploitées peuvent nous permettre d’expliquer le comportement des exploitants sous les conditions que l’on observe, et ainsi pouvoir prédir son comportement sous autres conditions notamment en présence de nouvelles technologies, ou en face d’autres conditions climatiques.

L’objectif des modèles est de servir comme des petits “laboratoires”, qui résident dans nos ordinateurs et nous permettent de simuler les conséquences d’une grande variété d’expériences. Bien entendu aucun modèle ne peut capter toute la complexité du monde réel, et les modèles utilisés dans l’enseignement de la modélisation sont particulièrement simplifiés. Mais en simplifiant le monde, la modélisation nous amène certains avantages. Elle nous permet d’isoler certaines interactions d’une manière très précise, et de présenter nos données et toutes nos présuppositions d’une manière très explicite.

La précision et l’explicité des modèles facilite la communication entre chercheurs, et rend possible l’accumulation des connaissances au sein d’une communauté scientifique. En partant
d’un modèle relativement simple nous pouvons progresser vers des modèles de plus en plus compliqués et de plus en plus pertinents à notre milieu agronomique et social tout en gardant le même langage que des milliers d’agro économistes à travers le monde, qui ont tous suivi une formation semblable à celle-ci.

La démarche fondamentale de la modélisation est de concevoir une hypothèse, d’élaborer un modèle orienté à sa vérification, comparer ses résultats avec le comportement des exploitants dans le milieu réel, de rédiger le modèle pour assurer qu’il représente les conditions agro économiques de l’exploitant, et finalement d’introduire au modèle le changement auquel on s’intéresse. A force de tels travaux, les économistes développent un ensemble de modèles capables de représenter tous les environnements pertinents, et peuvent choisir parmi eux celui qui sera le plus utile pour représenter toutes sortes de changements. Dans le cadre de cette étude, les changements seront d’ordre climatique. Le logiciel le plus performant et le plus répandu pour résoudre ce genre de situation est le GAMS le *General Algebraic Modeling System*.

IV-Le modèle bioéconomique de la région du lac de guiers

Le modèle a été appliqué à la ferme « *Agriculture de rente et Elevage sédentaire* ». Le modèle a été écrit avec le logiciel GAMS (General Algebric Modeling System).

On suppose que le producteur cherche à maximiser son revenu net sous différentes contraintes. Le revenu net est le revenu provenant des ventes de la production agricole et des animaux, moins les charges agricoles et celles liées à l’élevage : coût des intrants, des infrastructures d’irrigation, des achats de nourriture, de la main d’œuvre (familiale ; salariée : saisonnier et journalier), de l’amortissement des équipements et le coût de la location de la terre.

Les contraintes sont la terre, le travail, le capital, la consommation, la production et le risque climatique.

On suppose qu’il y a de bonnes années (bonne production), des années moyennes et de mauvaises années, chacune ayant une probabilité donnée de se produire. L’agriculteur a ou non la possibilité de suivre les recommandations d’un système de prédiction de la qualité de la saison.

Les sorties du modèle, dont on analyse la variation selon les différents scénarios, sont la surface par culture et par saison, le Revenu par état de la nature, le Revenu global, la production globale, le revenu minimal en période sèche, le capital disponible (pour
l'agriculture), l’autoconsommation, les achats, la vente, la location de terre, l’autoconsommation, les achats, la vente.

IV-1 Description du modèle dans GAMS :

On spécifie un modèle GAMS en donnant à la fois sa structure et des données proprement dites dans un fichier séquentiel. On trouve de manière générale les sections suivantes :

IV-1-1 Les ensembles :

Les ensembles définissent l’espace sur lequel sont définies les variables et les paramètres. Les ensembles définis ont été les suivants :

- **-q :** scénarios /q0 * q3/

- **-c :** toutes les cultures : arachide, manioc, patate douce, mil, niébé, sorgho, beref, bissap, tomate, patate douce, oignon, gombo, riz, jaxatu, batanse, choux, piment/

- **-c1(c) cultures pluviales :** arachide, mil, niébé, sorgho, beref, bissap, manioc, pastèque, gombo, riz/

- **-c2(c) :** cultures irriguées : arachide, pastèque, patate douce, manioc, tomate, oignon, gombo, jaxatu, batanse, choux, piment

- **-c3(c) céréales :** mil, niébé

- **-s :** saison de culture avec s1 : saison hivernale (culture pluviale) et s2 : contre saison (culture irriguée)

- **-z :** zones de cultures avec di : dieri ; wa : walo/

- **-n :** nature de la saison de culture avec n1 : bonne saison ; n2 : moyenne saison ; n3 : mauvaise saison

- **-p :** périodes (phases) des travaux au champ (hivernage et contre saison) avec p1 et p2 respectivement installation et suivi et récolte pour chaque saison concernée

- **-ch :** type de cheptel

- **-f :** fermes nous nous intéresserons à ceux qui font de l’agriculture de rente et à l’élevage sédentaire (renteElevTrans)

- **-r :** ressources de l’exploitation/

- **-fum :** fumier total estimé en nombre de charge (en charette)

- **-mof :** main d’œuvre familiale en uth (temps disponible)

- **-uth_ouv :** nombre d’unité travail homme (uth) d’ouvrier (sourgha) par campagne,

- **-ubt_tot :** unité bétail tropical total/
-mat : matériel agricole

-ch_ir : répartition des charges d'irrigation

-elv : système d'élevage

-ch_elv répartition des charges du système d'élevage par an

-v : variabilité des paramètres sur plusieurs années

-vrdt : variabilité du rendement,

-ch_ir variabilité des charges d'irrigation/

-I : lieu de vente des produits agricoles avec l1 : bord champ ; l2 : marche local (Keur Momar Sarr ou Richard Toll)

IV-1-2 Les données et l'étalonnage des paramètres :

Les paramètres sont toutes les données fixes, dont la valeur ne dépend pas de la solution du problème. Un paramètre est une variable exogène imposée par le modélisateur. Le mot clé utilisé pour annoncer l’introduction de données est PARAMETERS (qu’ils s’agissent de paramètres, de variables endogènes ou exogènes sur le plan théorique). Dans GAMS on commence par déclarer les paramètres puis ensuite les variables. Les paramètres qui ont été utilisés sont les suivants :

-amtl1(f) : total amort matériel;

-c_tradi(ch_ir) : coûts d'irrigation traditionnelle par campagne (Fcfa par ha)

-c_loca(ch_ir) : coûts d'irrigation localisée par campagne (Fcfa par ha)

-c_ir(ch_ir) : cout irrigation;

-cts : coût des intrants

-ubt : unité de bétail tropical;

-ter : terre en hectare;

-r_p : revenu pêche ;

-r_e : revenu élevage ;

-amp : amortissement matériel de pêche par système;

Les données peuvent être introduites sous forme de tableaux. Le mot clé est alors TABLE. Les tables regroupent des données croisées, les tables ont concerné de manière générale :

- Coûts des produits phytosanitaires par culture et par saison
• Coût des intrants (engrais, semences) par culture et par saison
• Prix des différentes spéculations par type de marché et par saison
• Rendement de chaque culture par type de sol par saison
• Temps de travail disponible pour chaque travailleur par saison
• Ressources en terres en fonction du type de ménage

Les données peuvent aussi être introduites sous formes de scalaire (lorsqu’un ensemble n’est pas associé). Le mot clé est alors **SCALAR**

- **pu_fum** : prix unitaire de la charge de fumier (Fcfa)/750/
- **prdt_phytogrp** : achat de produits phytosanitaires groupes(Fcfa)/6622.38/
- **ct_ouvr** : rémunération ouvrier ou sourgha par campagne (Fcfa) /850/
- **pert_cyp** : estimation de la perte due à l envahissement du typha par demi mètre par an/5000/
- **pert_Sali** : estimation de la perte en ha due à la salinité /0.2/

IV-I-3 Les VARIABLES :

Les variables sont les résultats que nous souhaitons explorer avec les scénarios. On commence par déclarer les variables du modèle (toute variable en GAMS doit être déclarée avant d’apparaître dans une équation). Les variables ont été les suivantes :

— X : Surface par culture et par saison (+)
— ZN : Revenu par état de la nature
— Z1 : Revenu global
— PR : Production globale (+)
— Rmin : Revenu minimal en période sèche
— CAP : Capital disponible (pour l'agriculture)
— AU : Autoconsommation (+)
— AC : Achats (+)
— VE : Vente (+)
— LOC : location de terre (+)
— AU : Autoconsommation (+)
La valeur des variables est obtenue en solutionnant le modèle d’optimisation. (+) représente une variable positive (dont la valeur ne peut être que positive).

IV-1-4 Les EQUATIONS :

Les équations représentent le fonctionnement du système. Les équations doivent d’abord être déclarées avant d’être définies. Le nom de l’équation doit être différent du nom de la variable qu’elle cherche à expliquer. La définition de l’équation suppose :

- le nom de l’équation
- l’ensemble sur lequel elle est définie
- les deux points « .. » pour annoncer l’équation
- expression du côté gauche
- l’opérateur =e=
- expression du côté droit
- le point virgule

Après déclaration des données et des variables on dit au modèle quel groupe d’équations il doit résoudre et comment il doit le résoudre. La syntaxe est la suivante :

MODEL nom /all/ ;
SOLVE nom USING NLP maximizing utility ; (Résous en utilisant la programmation non linéaire – NLP pour Non Linear Programming – et en maximisant l’utilité des agents)

IV-1-5-Explication des équations :

La fonction objectif maximise le revenu des activités agricoles pour une campagne, selon le type de saison multipliées par sa probabilité d’occurrence.

\[\sum_n \text{pro}_n \times z_n \equiv R \]

Avec pro(n) la probabilité qu’une saison donnée se réalise et z(n) le revenu global

\[\left(\sum_{c,s} px_{c,s,n} \times VE_{c,s} \right) - \left(px_{c,s,n} \times 1,3 \times AC_{c,s} \right) \]

\[- \left(\sum_{c,z,s} cts_{c,s} + \sum_{ch} i r_{ch} \times X_{c,z,s} \right) - \]

\[\sum_{elv,ch} elv_{elv,ch} \times ubt_{ch} + \sum_{ch} r_{ch} - ct_{ouvr} \times res_{n,ouvr} - amt - 20000 \times \sum_{z,s} loc_{z,s} = z_n \]

(1)
c : cultures ; s : saisons ; n : nature de la saison ; \(V \) : vente bord champ ; z : zone de culture (walo ou diéri) ; ch ir : charges d’irrigation ; ch elv : charges de l’élevage ; amt : amortissement du matériel agricole ; uth ouv : nombre d’unité travail homme (UTH) pour un ouvrier salarié par campagne ; cts : coût des intrants ; X : surface cultivée

\[
\left(\sum_{c, s} px_{c, s, n} \times VE_{c, n} \right) : \text{Somme des ventes sur la production}
\]

\[
(px_{c, s, n, l} \times 1,3 \times AC_{c, n}) : \text{Somme des achats de céréales pour la consommation}
\]

\[
\left(\sum_{c, z, s} cts_{c, z, s} + \sum_{ch, ir} c - ir_{ch, ir} \times X_{c, z, s} \right) : \text{Total en intrants et en charges d’irrigation}
\]

\[
\sum_{ch, ch, ch} c - elv_{ch, ch, elv} \times ubt_{ch} : \text{Somme des charges liées à l’élevage}
\]

\[
\sum_{ch} r - e_{ch} - ct - ouvr \times res_uth_ouv_ - amt - 20000 \times \sum_{z, s} loc_{z, s} : \text{Revenu de l’élevage soustrait des charges liées à la main d’œuvre, à l’amortissement et à la location de terre}
\]

La contrainte terre stipule que la somme des superficies cultivées doit être inférieure à la somme des superficies disponibles et celles louées. Le modèle dispose de deux zones de culture : le walo et le diéri et d’un choix limité de terre.

\[
\sum_{c, s} X_{c, s, n} \leq dter(s) + loc_{z, s} \quad (2)
\]

La contrainte de disponibilité de capital est importante pour les paysans les plus pauvres. Elle est surtout sévère en début de campagne quand les paysans doivent acheter des intrants.

\[
\sum_{c, s} cts_{c, s, n} \times X_{c, z, s} \leq dcap \quad (3)
\]

La contrainte de travail est forte lors de l’installation des cultures

\[
\sum_{c, s} (w_{c, s} \times X_{c, s}) \leq dw \quad (4)
\]

La contrainte de production stipule que la quantité produite doit être égale à l’autoconsommation et aux ventes

\[
\sum_{z, s} rdt_{c, z, s, n} \times X_{c, z, s} = autocons_{c, n} + vente_{c, n} \quad (5)
\]

La contrainte à la consommation prétend que la quantité de céréales consommées doit être supérieure à la quantité officiellement recommandée
La contrainte de risque oblige le modèle à un revenu minimum même les années les plus sèches.

\[Z_a(n3) \geq r \text{ min} \quad (6) \]

V- Analyse des sorties du modèle

V-1 Scénarii de prévision (Q0, Q1, Q2, Q3, Q4)

On suppose n l’état de la nature avec respectivement n1, n2, n3, une bonne année, une année moyenne et une mauvaise année. Q est la prévision météorologique.

- Q0 est la possibilité que les probabilités d’une bonne, moyenne et mauvaise année soient égales.
- Q1 est la prévision d’une bonne année
- Q2 est la prévision d’une année moyenne
- Q3 est la prévision d’une mauvaise année

Tableau 5: Scénarii de prévision

<table>
<thead>
<tr>
<th>Prévision</th>
<th>Q0</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonne année</td>
<td>33</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Année Moyenne</td>
<td>33</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Mauvaise année</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

L’agriculteur fait ses choix de culture selon la prévision, et on explore l’impact de ce choix selon que l’année est effectivement bonne, moyenne, ou mauvaise.

V-2 Ferme rente élevage sédentaire :

V-2 -1 Choix des cultures (surfaces et revenus potentiels) selon les scénarii de prévision météorologique

- Surfaces emblavées
Figure 5: Nature des cultures emblavées, type de sol et zone adaptés pour la ferme « rente élevage sédentaire »

Le paysan sèmera une grande quantité de manioc en zone diéri en saison hivernale quelque soit la prévision climatique. Si la météo prévoit une saison moyenne ou une mauvaise saison, les cultures exécutées seront pareilles. En effet, le paysan fera du manioc sur le walo ainsi que de l’arachide dans la même zone. L’oignon sera la deuxième grande culture après le manioc sans doute à cause de sa haute valeur ajoutée durant certaines périodes de l’année. En bonne année, le paysan fera en plus du manioc, de la patate qui peut être très rentable avec un rendement de 30000 tonnes à l’hectare et de l’arachide.

V-2-2 : Impact de la prévision sur le revenu et l’état de la nature

Figure 6: Revenus potentiels selon l’état de la nature pour la ferme « rente élevage sédentaire »
Lorsque la nature de la saison est conforme aux prévisions météorologiques, les revenus sont importants. Dans le cas contraire on note une baisse de revenus voire une absence de revenus. Par contre quand les probabilités sont égales, le paysan obtient les mêmes revenus quelque soit la nature de la saison.

Le producteur gagnerait plus à suivre les prévisions météorologiques mais il y a un risque non négligeable qui devra être pris en compte à savoir les pertes que peuvent observer les paysans si les services météorologiques venaient à se tromper.

Revenus potentiels :

Figure 7: Revenus potentiels pour la ferme « rente élevage sédentaire »

Le revenu agricole est plus important à Q2 et à Q0. En année sèche, les revenus agricoles vont diminuer mais plus en bonne année. Ces résultats confirment aussi la participation non négligeable de l’élevage dans le revenu global puisque ce dernier n’est constitué que du revenu agricole et celui de l’élevage. En effet, en année pluvieuse, les revenus de l’élevage sont plus importants que pour les autres années. La principale raison pourrait être que les animaux restent sur place pour le pâturage et pour l’eau, ils sont donc moins fatigués, la production de lait est plus importante. En année sèche par contre, ce revenu diminue considérablement. Dans ces cas, les troupeaux transhument vers d’autres zones plus riches en pâture ou bien dans certains cas, le pasteur fait un élevage intensif pour ceux qui n’ont pas un très grand troupeau les charges deviennent ainsi très lourdes, ce qui peut aussi fortement affecter le revenu global.
V- 2-3: Impact de la prévision sur l’autoconsommation, les ventes et les achats, selon l’état de la nature :

— \(Q_0, Q_1 \) et \(Q_2 \) : Le paysan vendra toute sa production et achètera tout le mil et le niébé nécessaire à l’alimentation de sa famille.

— \(Q_3 \) : En année moyenne et en mauvaise année, le paysan va consommer sa production en arachide, manioc et en patate. Les achats se feront pour le mil en année moyenne et le niébé en bonne année et en mauvaise année.

Tout le reste de la production sera vendu selon l’état de la nature qui correspondra. Dans les différents cas, le paysan devra acheter du mil pour sa consommation et non l’auto produire car ce ne serait pas rentable pour lui.

V- 2-4 : Intérêt économique de la prévision :

Revenu \(Q_0 \)-revenu\((QX) \) pour chaque réalisation

Tableau 6 : Intérêt de la prévision pour la ferme rente élevage sédentaire

<table>
<thead>
<tr>
<th>Réalisation</th>
<th>Prévision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Q_0) (pas de prévision)</td>
</tr>
<tr>
<td>Bonne année</td>
<td>-4.18016E+7</td>
</tr>
<tr>
<td>Année Moyenne</td>
<td>-4.18016E+7</td>
</tr>
<tr>
<td>Mauvaise année</td>
<td>-4.18016E+7</td>
</tr>
<tr>
<td>Intérêt économique</td>
<td>-4.18016E+7</td>
</tr>
</tbody>
</table>
L’intérêt économique de la prévision a été calculé en prenant comme référence le revenu du producteur qui a peur vis-à-vis du risque quelque soit la nature de la saison. Il est le résultat entre ce revenu et celui obtenu avec la prévision météorologique pour un paysan qui prend le risque de suivre les prévisions météorologiques. Les équations ont été les suivantes :

\[
\begin{align*}
\text{prev1}(f) &= \text{pzn}(f,'n1','q1') - \text{sum}(n, \text{pro1}(n,'q0') * \text{pzn}(f,n,'q0')); \\
\text{prev2}(f) &= \text{pzn}(f,'n2','q2') - \text{sum}(n, \text{pro1}(n,'q0') * \text{pzn}(f,n,'q0')); \\
\text{prev3}(f) &= \text{pzn}(f,'n3','q3') - \text{sum}(n, \text{pro1}(n,'q0') * \text{pzn}(f,n,'q0'));
\end{align*}
\]

L’intérêt économique de la prévision nous renseigne sur le gain potentiel ou la perte qu’un paysan qui suit les prévisions météorologiques pourrait avoir.

D’après les résultats, le paysan n’a aucun intérêt à suivre les prévisions météorologiques car la perte qui y est liée est très importante.

V-2-5 Scénarios sur l’aversion au risque (revenu minimum)

Il nous a été difficile voire impossible de faire des simulations sur le revenu minimum. Il n’y a pas eu de changement au-delà des 100000 FCFA fixés et même au-delà de 4500000, le modèle est jugé infaisable.

V-2-6 Valeur marginale du travail et de la terre :
Figure 8: Valeur marginale de la terre pour la ferme rente élevage sédentaire

En contre saison, la valeur de la terre est très importante dans le walo et ce quelque soit la prévision météorologique. Par contre, la zone diéri étant très étendue, sa valeur n’est pratiquement pas très importante. L’agriculture de la zone étant particulièrement sous pluie, les producteurs ont moins de difficultés pour avoir des terres en zone diéri et walo. Ces terres sont malgré tout plus chères en année moyenne.

La valeur marginale d’une journée de travail est pratiquement sans importance. Elle est surtout significative en période hivernale pendant l’installation des cultures où elle prend les valeurs suivantes :

Tableau 7: Valeur marginale du travail pour la ferme rente élevage sédentaire

<table>
<thead>
<tr>
<th>Probabilités</th>
<th>Q0</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>slp1</td>
<td>47124</td>
<td>41762.958</td>
<td></td>
<td>61875.083</td>
</tr>
</tbody>
</table>
V-3 Ferme vivrière élevage sédentaire :

V-3-1 choix des cultures (surfaces et revenus potentiels) selon les scénarii de prévision

- Surfaces emblavées

![Figure 9: Nature des cultures emblavées, type de sol et zone adaptés pour la ferme « vivrière élevage sédentaire »](image)

Les mêmes cultures devront être produites en bonne année et quand il n’y a pas de prévision. Il s’agit en grande partie de l’arachide en saison hivernale en zone diéri, suivi de la pastèque et du manioc dans la même saison en zone diéri. En année moyenne, le paysan semera de l’arachide en saison hivernale dans le walo et dans le diéri. Une petite superficie sera emblavée en pastèque. En année mauvaise, le paysan produira de la pastèque dans le walo et de l’arachide dans le diéri en saison hivernale.

V-3-2 Impact de la prévision sur le revenu et l’état de la nature :
Le revenu est important aussi quand les prévisions sont conformes à celles de la météo. Sinon quelque soit la prévision si l’année est mauvaise, le paysan a un revenu assez substantiel.

➢ Revenus potentiels :

Le revenu tiré de l’élevage est plus important quelque soit l’année. Le revenu agricole est plus important en bonne année, il diminue fortement en mauvaise année.
V-3-3 Impact de la prévision sur l’autoconsommation, les ventes et les achats selon l’état de la nature :

-Q0 : pas d’autoconsommation. Le paysan devra acheter du mil en n1 et en n2 ainsi que du niébé en n1.
-Q1 : l’autoconsommation concernera le manioc et la pastèque en n2 et n3. Le mil sera acheté quelque soit la prévision.
-Q2 : l’arachide en n2 et n3 sera autoconsommé. Le paysan achètera du mil en n et n2 ainsi que du niébé en n3.
-Q3 : le paysan va auto consommer de l’arachide et de la pastèque en n1 et n2 et du niébé quelque soit la qualité de l’année.

Comme précédemment, tout le reste de la production sera vendu selon l’état de la nature qui correspondra.

V-3-4 Intérêt économique de la prévision :

Tableau 8: Intérêt de la prévision

<table>
<thead>
<tr>
<th>Réalisation</th>
<th>Prévision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q0 (pas de prévision)</td>
</tr>
<tr>
<td>Bonne année</td>
<td>-1.1161E+6</td>
</tr>
<tr>
<td>Année Moyenne</td>
<td>-1.1161E+6</td>
</tr>
<tr>
<td>Mauvaise année</td>
<td>-1.1161E+6</td>
</tr>
<tr>
<td>Intérêt économique</td>
<td>-1.1161E+6</td>
</tr>
<tr>
<td>(33/33/33)</td>
<td></td>
</tr>
</tbody>
</table>

Dans ce cas précis de la ferme vivrière élevage sédentaire, le résultat est positif. Le paysan pourrait donc avoir un intérêt non négligeable à suivre les prévisions météorologiques.
V-3-5 : Valeur marginale de la terre et du travail :

La valeur de la terre est très importante dans le walo et ce plus en bonne année. Les autres types de sol n’ayant pratiquement pas une haute valeur monétaire.

La valeur d’une journée de travail est aussi plus importante pendant l’installation des cultures sinon elle reste sans grande valeur.

Tableau 9: Valeur marginale du travail pour la ferme vivrière élevage sédentaire

<table>
<thead>
<tr>
<th></th>
<th>q0</th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1 .p1</td>
<td>80000.00</td>
<td>230000.00</td>
<td>75000.00</td>
<td>23000.00</td>
</tr>
</tbody>
</table>
Conclusion :

Les sorties du modèle nous ont permis de définir les éventuelles cultures qui pourront être les plus rentables ainsi que les zones adaptées selon les prévisions climatiques. Par ailleurs, il a été noté aussi qu’il n’y a pas d’intérêt économique à suivre ces prévisions car les revenus ne sont importants que quand elles s’avèrent justes sauf pour la ferme vivrière élevage sédentaire qui observe un revenu en mauvaise année.

Aussi, la zone concernée étant caractérisée par une grande variabilité pédologique, entre autres, beaucoup de difficultés ont été rencontrées dans l’application du modèle.

Dans l’avenir, il serait plus judicieux de prendre une ferme typique dans une zone géographique déterminée pour pouvoir prendre en compte toutes les caractéristiques propres à la ferme prise comme entité et non considérer une zone géographique regroupant plusieurs fermes qui sont pour la plupart très différentes de par leurs façons et choix culturales.
BIBLIOGRAPHIE :

FALL S.; Novembre 2006. Modélisation bioéconomique dans la région du lac de GUIERS, Phase 1 : Typologie des systèmes de production.40 pages

FALL S.; Novembre 2006. Modélisation bioéconomique dans la région du lac de GUIERS, Phase 1 : Caractérisation des systèmes de production.40 pages