Heterozygosity In Diploid Musa Lines: Implications For Marker Development, Genomics, Sequencing And Breeding Vegetatively Propagated Crops

JS (Pat) Heslop-Harrison¹, Foo Cheung², William A. Moskal, Jr², Isabelle Hippolyte³, Franc Christophe Baurens³, Frederic Bakry³, Takuji Sasaki⁴, Takashi Matsumoto⁴, Mathieu Rouard⁵, Trude Schwarzacher¹, Nicolas Roux⁵, Christopher D. Town²

¹ Biology, University of Leicester LE1 7RH, UK
² JCVI, Rockville, USA
³ CIRAD, UMR DAP, Montpellier F-34098 France
⁴ NIAS, Tsukuba, Ibaraki 305-8602, Japan
⁵ Bioversity, Montpellier, France

Musa species (bananas and plantains) are usually vegetatively propagated, and we have measured the levels and nature of heterozygosity within various accessions to examine genetic and genomic diversity, to compare heterozygosity with other species which are in-breeding, to investigate the feasibility of shot-gun sequencing approaches in potentially heterozygous plants, to optimise marker development, and to better characterize a single doubled-haploid Musa accession. We studied genic regions, areas flanking SSRs, and non-gene, non-SSR fragments of the genome. We analysed heterozygosity in single plants of various accessions of diploid banana (Musa) accessions by two approaches: PCR amplification of fragments of genomic DNA and sequencing, and by comparison of sequenced BACs from homologous chromosome regions from single plants. The study was carried out with a focus on Musa acuminata ‘Calcutta 4’, ‘Pahang’ and another a Musa malaccensis accession, and a doubled haploid line derived from ‘Pahang’, along with some sequences from M. schizocarpa and M. balbisiana.

We thank the Generation Challenge Programme for support of parts of this project. Further details and the presentation will be available from www.molcyt.com and data from www.musagenomics.org.