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Abstract – Time series of optical satellite images 
acquired at high spatial resolution constitute an 
important source of information for crop monitoring, in 
particular for keeping track of crop harvest. However, 
the quantity of information extracted from this source is 
often restricted by acquisition gaps and uncertainty of 
radiometric values. This paper presents a novel 
approach that addresses this issue by combining time 
series of satellite images with other information from 
crop modeling and expert knowledge. An application for 
sugarcane harvest detection on Reunion Island using a 
SPOT5 time series is detailed. In a fuzzy framework, an 
expert system was designed and developed to combine 
multi-source information and to make decisions. This 
expert system was assessed for two sugarcane farms. 
Results obtained were in substantial agreement with 
ground truth data; the overall accuracy reached 
96.07%. 
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1 Introduction 
Over the past decade, time series of satellite images 
acquired at high spatial resolution have proven to be an 
important source of information for different agricultural 
applications. Several authors have recognized the benefits 
of this kind of data for monitoring agricultural lands [1], 
classifying land cover [2-4], mapping seasonal patterns 
and crop rotations [5, 6],  and for many other uses (see 
papers collected in [7, 8]). 
Nevertheless, the quantity of information extracted from 
time series of optical images is often restricted by several 
factors: acquisition gaps, atmospheric conditions, 
imperfect radiometric normalization, radiometric 
confusion, etc. Therefore, to make credible decisions, this 
information needs to be supplemented with data from 
other sources. 
Few studies have combined high spatial resolution multi-
temporal images and/or its derived products with ancillary 
data. Lucas et al. [9] evaluated the use of the Landsat 
ETM+ time series for mapping semi-natural habitats and 

agricultural land cover by integrating topographic maps, 
digital elevation data, digital ortho-photography, field 
boundaries, and other supportive data. Metternicht et al. 
[10] mapped salinity distributions using an approach that 
integrated multi-temporal classification of Landsat TM 
images, physical and chemical soil properties, and 
landform attributes. Other studies have combined products 
derived from multi-temporal images to improve change 
detection performance when evaluating forest logging 
surfaces and when dealing with soil coverage during 
winter [11]. 
Until now, the integration of agronomic models with 
remote sensing data was restricted to model adjustment 
issues (assimilation, forcing, etc.) [12]. Little attention has 
been paid to the use of agronomical model outputs as an 
information source for supplementing remote sensing 
data. This kind of model, which is based on climatic and 
soil biophysical parameters, may provide useful 
information that can compensate for the lack of 
radiometric data. 
Another source of substantial agricultural application 
information is expert knowledge. 
Accordingly, the aim of this study is to present a novel 
approach for crop monitoring using time series of satellite 
images combined with information from crop modeling 
and expert knowledge. To describe this approach, an 
application for sugarcane harvest detection is detailed. 

2 Study site and data sets 
The study site consists of two sugarcane farms located in 
the north-east part of Reunion Island (Figure 1), which is 
a small territory of ~2,500 km² in the Indian Ocean (21°7' 
to 19°40' S, 55°13' to 61°13' E), where sugarcane is the 
main crop. The first farm is at an average altitude of 70 m 
and includes 33 fields with an average size of 5.4 ha. The 
second farm is at an altitude ranging from 400 to 700 m, 
and has 46 fields with an average size of 3.5 ha. As the 
study area is located in a tropical zone, the year is divided 
into two seasons: a hot rainy season from November to 
April, and a cool dry season from May to October. 



 
Figure 1. On the left, a false color composite (Red: band-

4; Green: band-3; Blue: band-1) of a SPOT5 image 
acquired over Reunion Island. On the right, a close-up of 

the study site with sugarcane fields in red. 

The satellite data set used in this study consists of 10 
SPOT5 images acquired over Reunion Island between 
January 10th, 2003 and December 7th, 2004. Both SPOT5 
instruments (HRG1 and HRG2) acquire radiation in four 
spectral bands with high spatial resolution: 10 m for the 
Green, Red, and Near Infra-Red (NIR) bands, and 20 m 
for the Short Wave Infra-Red (SWIR) band. The images 
belong to the KALIDEOS-ISLE REUNION database set 
up by the CNES1 [13, 14]. All images were ortho-rectified 
and co-registered to the UTM coordinate system (zone 40 
South) with a root mean square error of less than 0.5 pixel 
per image. 
The radiometry of the images was corrected so that pixel 
values represent the top of canopy reflectances in the four 
spectral bands [15, 16]. Cloud mask was available for 
each image. Table 1 shows the characteristics of the 
images in the time series. 
Block parcel boundaries for all Reunion Island were 
provided by the DDAF2 and were refined by the CIRAD3 
to define the boundaries of each field in the study site. 
Daily climatic data recorded at La Mare meteorological 
station near the two sugarcane farms were collected for 
the period covered by the satellite time series. These data 
are daily estimations of rainfall (mm), potential evapo-
transpiration (mm), global radiation (J/m2), and 
minimum, maximum and mean temperature values (°C). 
Climatic data were required to run the crop growth model. 
A ground truth database was built by using harvest dates 
reported by farmers for each field during the 2003 and 
2004 harvest campaigns. This database indicates the status 
of each field (whether it was harvested or not) between 
each pair of consecutive satellite acquisition dates in the 
time series. 
 

Table 1. Characteristics of the SPOT5 time series. 

                                                
1 Centre National d'Etudes Spatiales ; French Spatial Agency. 
2 Direction Départementale de l'Agriculture et de la Forêt ; 
Departmental Directorate of Agriculture and Forestry. 
3 Centre de coopération Internationale en Recherche 
Agronomique pour le Développement ; French Agricultural 
Research Centre for International Development. 

Dates SPOT5 
Instrume
nt 

Incidence 
angle 
(in 
degree) 
(Right = -) 

Solar 
elevation 
(in 
degree) 

Phase 
angle 
(in 
degree) 

01/10/2003 HRG 2 -04.65 64.10 21.28 
05/04/2003 HRG 1 10.90 46.80 47.99 
07/21/2003 HRG 1 10.58 41.20 53.13 
09/01/2003 HRG 1 -04.42 50.63 37.31 
12/19/2003 HRG 1 -02.90 67.20 19.90 
04/11/2004 HRG 1 +17.95 52.45 48.41 
06/18/2004 HRG 2 +03.25 39.10 51.95 
08/19/2004 HRG 1 +17.96 48.50 51.24 
11/06/2004 HRG 1 -19.16 66.63 09.07 
12/07/2004 HRG 1 -12.28 66.65 11.19 

 

3 Information from the time series 
Using the time series of satellite images acquired at high 
spatial resolution, temporal profiles of NDVI (Normalized 
Difference Vegetation Index) can be extracted for each 
agricultural field. The NDVI is computed using 
reflectances (ρ) in the red and NIR bands: 

redNIR

redNIRNDVI
ρρ
ρρ

+
−=  (1) 

The temporal profile of NDVI provides useful information 
about the actual field status, and about its different 
historical stages. In general, this profile can be divided 
into two periods: a period in which NDVI values increase, 
corresponding to the vegetative development of the field 
crop, and another period with steady or decreasing values, 
corresponding to the maturation phase. Figure 2 shows an 
example of the temporal profile of a sugarcane field 
NDVI, extracted from a time series of SPOT images 
acquired with high temporal repeatability. 
Using SPOT5 images in the time series and field 
boundaries, the temporal profile of NDVI was extracted 
for each field in the study site. This calculation was done 
after discarding cloud pixels using the cloud masks. 
 

 
Figure 2. Example of the temporal profile of sugarcane 

NDVI calculated for a ratoon crop.  



4 Information from crop modeling 
and expert knowledge  

Since NDVI temporal profiles extracted from time series 
are often incomplete because of image acquisition gaps, 
atmospheric conditions and/or radiometric problems, other 
sources of information are required to reliably analyze 
these profiles in order to make good decisions. 

4.1 Crop modeling 
One way to meet this requirement is to simulate NDVI 
values using ancillary data. This can be done using crop 
growth models that generally provide estimates of LAI 
(Leaf Area Index) values by using climatic data and soil 
characteristics parameters. LAI estimations can then be 
transformed into NDVI values using relationships that are 
specific to the studied crop [17]. 
In our application, we used the sugarcane 
ecophysiological growth model MOSICAS [18] to 
simulate LAI  temporal profiles at the field scale. This 
dynamic model estimates sugarcane growth on a daily 
time scale. It deals with biophysical data on the 
environment of the sugarcane field and the crop 
management sequence. Daily climatic data available in the 
dataset were used and soil characteristic parameters were 
obtained from the model code. 
Since our aim was to acquire information based on NDVI, 
we transformed daily estimates of LAI made by 
MOSICAS to daily NDVI estimates using the regression 
model we proposed in [19] (Eq. 2): 

)003.0ln(*713.91 LAINDVI =  (2) 
From the simulated NDVI temporal profiles, we built a 
helpful indicator for harvest detection: Tn that represents 
the nominal time required (in days) to reach a given 
threshold of NDVI starting with a given harvest date. 
Figure 3 illustrates an example of the relationship between 
the supposed harvest date and Tn for different NDVI 
threshold values. We observed that for high NDVI 
thresholds (0.7 in our example) the model was very 
sensitive to variations in climatic variables such as rainfall 
amount. 
The information extracted from crop growth modeling 
(Tn), mainly based on climatic data, is independent from 
the time series of satellite images, and may suggest the 
possibility of sugarcane being harvested between two 
specific dates. 

4.2 Expert knowledge 
Knowledge about the phenological stages of the studied 
crop, as well as about cropping systems is key information 
that must be taken into account. This source allows a 
better understanding of the relationship between the 
temporal behavior of NDVI and the crop field status, and 
it offers important temporal constraints that particularly 
help in making decisions when there is a lack of 
radiometric data. 

 
Figure 3. Examples of relationships between the supposed 
harvest date that relates to the NDVI simulation starting 

date, which is the acquisition date t’, and the nominal time 
(Tn) required to reach a given NDVI threshold NDVITh. 

In our application, knowledge about the sugarcane cycle, 
its cropping system, and its phenology were collected 
from experts to facilitate the harvest detection process. 

5 Information fusion in an expert 
system 

To deal with the multi-source information and to make 
decisions, one must design an appropriate framework that 
defines the use of each source, characterizes the output, 
and identifies the information fusion technique. 
Because of its well known ability to deal with imprecise 
and uncertain information, and to model linguistic 
concepts, fuzzy logic formalism was chosen to design an 
expert system for the sugarcane harvest detection. The 
developed system provides decision (harvested or not-
harvested) about a sugarcane field between two 
acquisition dates t and t’. 

5.1 System inputs 
System inputs consisted of 11 parameters built using 
information extracted from three different sources: time 
series of SPOT5 images, crop growth modeling, and 
expert knowledge. 
The first set of inputs (In1, In2, In3, In4 and In5) 
concerned temporal information, the second set (In6, In7 
and In8) related to NDVI values, and the third set (In9, 
In10 and In11) dealt with NDVI dynamics. A detailed 
description of these inputs can be found in [19]. Here is a 
brief overview: 
- In1 and In2 are the classes of acquisition dates t and t’ 

respectively. 
- In3 compares the temporal distance (in days) between 

t and the last harvest date with the nominal cycle 
length of sugarcane. 

- In4 compares the temporal distance (t-t’) with Tn. 
- In5 compares the difference between t and the date of 

the beginning of the harvest campaign with Tn. 



- In6, and In7 are classes of NDVI(t) and NDVI(t’) 
respectively. 

- In8 is a qualitative indicator of the amount of t” for 
which NDVI values (NDVI(t’’)) are High (t”= all 
dates before t’). 

- In9 compares the two-date difference in NDVI 
calculated at t and t’ with a given threshold. 

- In10 and In11 check if the sign of the gradient 
between NDVI(t’) and NDVI(t) is negative or positive. 

Fuzzy sets and labels were used to define the partitioning 
of the universe of each input using linguistic concepts. 
Fuzzy partitioning of In6 and In7 is shown in Figure 4; 
labels of inputs In1 and In2 are shown in Figure 5; and 
fuzzy sets of inputs (In3, In4, In5 and In9) are shown in 
Figure 6. Each of inputs In8, In10 and In11 has four 
labels: [No t”], [For at least one t”], [For the majority of 
t”] and [For all t”]. 
Information from the time series contributed to the 
definition of all inputs by providing NDVI values or 
acquisition dates. Expert knowledge was used in the 
majority of input definitions either by integrating 
information about the cropping system (nominal cycle 
length, last harvest date, mill opening and closure dates) 
or by its role in the configuration of fuzzy input partitions. 
For example, the NDVI fuzzy sets were designed 
according to expert knowledge about the phenology and 
field status of sugarcane as well as about its NDVI 
temporal profiles. The following are expert conclusions: 
- Low NDVI values (< 0.30) generally correspond to 
residues and bare soil after field harvesting. 
- In the growth phase, the NDVI values are Medium 
(between 0.30 and 0.75). They are also Medium during the 
senescence phase. 
- At the end of the growth stage and before senescence, 
NDVI values are High (>0.75). 
Figure 4 shows the fuzzy sets of NDVI and an example of 
NDVI profiles plotted according to thermal time for 
several sugarcane fields. 
Information from crop modeling contributed to two key 
inputs (In4 and In5) that evaluated harvest possibilities by 
comparing temporal information. An ambiguity range of 
±1 month was added to these inputs to account for 
imprecision of the model and for effects of climatic 
variation observed for high values of the NDVI threshold. 

5.2 Fuzzy rule generation 
The rule base of a fuzzy system describes the behavior of 
the inference based on the linguistic terms associated with 
the input and output variables. It groups the different 
possible knowledge-based scenarios by a finite collection 
of If X Then Y rules, e.g., 
Rule 1: if x1 is A1

1 and x2 is A2

1

 … and xn is An

1 then y is B1 
Rule 2: if x1 is A1

2 and x2 is A2

2 … and xn is An

2 then y is B2 
    : 
Rule r: if x1 is A1

r and x2 is A2

r … and xn is An

r then y is Br 
(3) 

where Ak

r is the fuzzy set of the input variable Ink assigned 
to xk, and Br is the conclusion of the rth

  rule. 

The rule base of our system was generated automatically 
with the software FisPro [20]. 
Rule generation was based on the construction of a fuzzy 
decision tree by using a learning dataset. Fuzzy decision 
trees are an extension of classic decision trees [21, 22]. 
They are composed of one root and a series of other 
nodes. Terminal nodes are called leaves. The main 
advantage of the decision tree is to generate incomplete 
rules that are only defined by a subset of the available 
input variables. 
The tree induction is an iterative process; at each step, a 
new node is added. Each node corresponds to a split on 
the values of one input variable. This variable is chosen to 
reach a maximum of homogeneity among the examples 
that belong to the node, relative to the output variable. A 
node generates a number of sub-nodes equal to the 
number of fuzzy sets of the selected variable. This is 
equivalent to minimizing entropy. The paths from the root 
node toward the leaf nodes are easy to interpret as 
decision rules [23]. 
Fuzzy decision trees proposed in FisPro are based on an 
implementation of the fuzzy ID3 algorithm [24]. The 
space partitioning of each input must be user-defined prior 
to running the algorithm. 
 

 
Figure 4. NDVI profiles plotted according to thermal time 
for several sugarcane fields. On the right are the fuzzy sets 

of NDVI-defined inputs In6 and In7. 

 
Figure 5. Temporal intervals used for the classification of 

image acquisition dates. TLO, TLC, TO and TC are the 
beginning and end dates of the last and the current harvest 

campaign respectively. 



5.3 System inference 
The generated rules base is used to infer decisions for new 
input values. The inference method defines the way in 
which the system attributes weights to the conclusions of 
the rules that are fired by new input values, and the way it 
aggregates the weighted conclusions of these rules in 
order to assign membership degrees to the decision labels. 
The inference technique used in our expert system is 
based on Mamdani's method. The weight wr attributed to 
the conclusion Br of an activated rule r is calculated by 
combining the membership degrees of rule premises in a 
conjunctive way using the min t-norm: 

( ) ( ) ( ) ( )( )pAAA
rr xµxµxµBw r

p
rr ,...,,min 21
21

=  (4) 

where 
( )jA
xµ r

j  is the membership degree of the xj value 

to the fuzzy set 
r
jA . 

The aggregation of the distinct conclusions of the m 
activated rules is done in a disjunctive way using the max 
t-norm. Therefore, the membership degree µj assigned to 
the decision label j is calculated as follows: 

mj ...,,1=∀      (Equation 3) 

  ( )( ){ }jBBw rrr

rj == maxµ   

(5) 
To obtain a crisp decision, a defuzzification operator that 
retains the label j with the highest membership degree µj, 
is used. Then, the inferred system decision about the 
status of a sugarcane field between two acquisition dates t 
and t’ for each new set of 11 input values is either 
harvested or not-harvested. 

6 Results 
The expert system was used to automatically detect the 
harvest of sugarcane fields at the study site using the 10 
SPOT5 images. 
Different percentages of learning data were used for the 
generation of the system rules. The aim was to evaluate 
the sensitivity of the system to the variation in the learning 
dataset size. A learning dataset consisted of input values 
calculated for a given percentage of sugarcane fields on 
all acquisition dates with the corresponding status 
(harvested or not-harvested) available from ground truth 
data. 
Figure 7 shows an example of a rule generated 
automatically using 50% of the data for training; this rule 
can be easily interpreted because of the linguistic aspect 
of the input and the conclusion variables. By interpreting 
each generated rule we can understand which scenario it 
reflects, and therefore evaluate its generic aspect. 
For each percentage of learning data, the system was used 
to make decisions for the rest of the fields for all dates. To 
make a robust evaluation, a k-fold cross-validation, with k 
= 10, was made for each case. 

Figure 8 shows the overall accuracy (OA) of the system 
obtained with different percentages of learning data and 
after a 10-fold cross-validation. 

a) 

b)

 
c) 

 
d) 

 
Figure 6. Fuzzy sets of inputs In3 (a), In4 (b) , In5 (c) and 
In9 (d). LHD = Last harvest date; NCL = Nominal cycle 
length, Tn = Nominal time; and To = opening mill date. 

 

It is clear that the system decisions were in substantial 
agreement with the ground truth data; OA values 
exceeded 91% in all cases. A very satisfactory OA value 
of 96.07% was reached when the percentage of learning 
data was about 50%. 

7 Conclusion 
This paper presented a novel approach for dealing with 
time series of optical satellite images used for crop 
monitoring. Data extracted from time series were 
combined with information from crop model output and 
expert knowledge, in order to make credible decisions. 



IF In2 is « Current Campaign » 
AND In4 is « Higher than Tn » 
AND In6 is «  Low » 
AND In7 is « High » 
AND In8 is « For all t” » 
AND In9 is « Higher than threshold » 
THEN « Harvested » 

 

Figure 7. An example of a rule generated automatically using learning data, with a schematisation of the scenario that it 
reflects. The rule is defined using a subset of input variables (In1, … , In11) and a conclusion. Each point in the NDVI 
temporal profile represents the NDVI value of the sugarcane field calculated at a given acquisition date (t, t’ or t”<t’). 

 
The description of the approach was done using an 
application example of sugarcane harvest monitoring with 
a SPOT5 time series. An expert system designed and 
implemented for automatic harvest detection was 
described. 
Results obtained when evaluating the expert system were 
in substantial agreement with ground truth data; the 
overall accuracy reached 96.07%. The next step 
concerning the sugarcane application consists in 
examining the robustness of the automatically generated 
rules by testing the system at other sites and in other 
years. It would also be interesting to analyze the 
contribution of each information source to system 
performance. 
The approach outlined in this paper is generic and very 
promising. Many models that simulate the growth of the 
main annual crops exist (e.g., STICS [25]), and expert 
knowledge about these crops could be obtained easily 
either from farmers or from agronomic knowledge bases 
[26]. The combination of crop model outputs and expert 
knowledge with time series of high spatial-resolution 
satellite-images seems to be an excellent tool for crop 
monitoring. 
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Figure 8. Overall accuracy of the expert system using 
different percentages of learning data. 
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