Mechanisms of haplotype divergence at the RGA08 NBS-LRR locus in wild banana: *Musa balbisiana*

Franc-Christophe BAURENS
CIRAD
Banana is a giant herb

A bunch of fruits, composed of hands and fingers

a pseudo stem formed of tightly packed leaves

Vegetative propagation through suckers
An important plant with complex genetics

Genus *Musa*

Musa acuminata *Musa balbisiana*

Diploid/triploid cultivars

100 billions of tons production

90 billions of tons local consumption
Bananas belong to a sister group of Poales.

Poales (9,002,614)
- POACEAE: Agrostis, Avena (oats), Festuca, Brachypodium, Lolium, Aegilops, Hordeum, Oryza (rice), Dendrocalamopsis (bamboo), Leymus, Panicum (switchgrass), Pennisetum Secale, Triticum, Eleusine (finger millet), Saccharum (sugarcane), Sorghum, Zea (maize);
- BROMELIACEAE: Ananas (pineapple)
- Dasyphygionales (43)
- Zingiberales (63,581)
 - MUSICACEAE: Musa, ZINGIBERACEAE: Zingiber (ginger), Curcuma (turmeric)
 - Commelinales (388)
 - Arecales (6,404)
 - ARECACEAE: Cocos (coconut), Elaeis (oil palm)
- Asparagales (65,450)
 - ALLIACEAE: Allium; ASPARAGACEAE: Asparagus; AGAVACEAE: Agave, Yucca;
 - AMARYLLIDACEAE: Lycoris; HYACINTHACEAE: Hyacinthus; IRIDACEAE: Crocus, iris;
 - ORCHIDACEAE: Phalaenopsis (moth orchid)
 - Liliales (5,315)
 - ALSTROEMERIACEAE: Alstroemeria;
 - LILIACEAE: Lilium
- Pandanales (683)
 - VELLOZIACEAE: Xerophyta (resurrection plant)
- Dioscoreales (635)
 - DIOSCOREACEAE: Dioscorea (wild yams)
- Petrosaviales (21)
- Alismatales (6,997)
 - ARECACEAE: Zantedeschia (arum lily), Lemna (duckweed)
- Acorales (9,858)
 - ACORACEAE: Acorus
Comparative genomics of banana

- 9 out of 17 BAC clones with partial synteny
- traces of synteny retained over 120 million years of divergence

Lescot et al. BMC Genomics 2007
Comparative genomics within the Musaceae

- high level of synteny
- intergenic regions are variable

Lescot et al. BMC Genomics 2007
Musa diversity: the *Musa balbisiana* genome

- *Musa balbisiana*: wild diploid species $x = 11$
- Involved in the genomic composition of cultivars (plantain)
- High vigor and disease resistance
- Two genomic regions identified and sequenced containing multiple RGAs: 226kb and 252Kb
- Genetic mapping \rightarrow allelic regions
- Flanking gene-rich regions (90 kb) are highly conserved
- Haplotype divergence: 1 My (Musa A/B: 4.6 My)
- TEs participate to haplotype divergence (2 indels, 5.3 kb)
- Complex pattern in the RGA cluster, higher TE density
The MARGA08 gene family

- 31 NB-LRR genes of the same family (average identity > 80%)
- 2 clades
- 9 Allelic pairs
- Evolution through tandem and inverted gene duplication, segment duplication, TE activity, diversifying selection
- Differential expansion of the two RGAs clades on the two DNA strands and between haplotypes
- 21 kb size difference between the haplotypes at this locus.
Conclusion

- One of the largest single family RGA cluster identified in plants.

- High sequence conservation in gene rich regions of *M. balbisiana*

- Recent TE activity contributes to sequence divergence

- Considerable variation exist between haplotypes of one plant in the repertoire of RGA

- The “MUSATRACT” ANR funded banana genome sequencing project is ongoing (Genoscope, CIRAD and GMGC). Sequencing of the doubled haploid Pahang clone (*M. acuminata*, genome A).
Acknowledgements

CIRAD : Team « Genome structure and evolution »
Stéphanie Sidibé-Bocs, Nabila Yahiaoui, Marguerite Rodier-Goud, Didier MBéguié, Angélique D’Hont

Bioversity : Mathieu Rouard

NIAS : Takashi Matsumoto

UCB/UnB : Robert N. G. Miller

BAC sequencing was funded by the CGIAR Generation Challenge Programme (GCP)
Thank you for your attention
GENOME EVOLUTION BY POLYPLOIDIZATION: BACKCROSS ENHANCES DNA SEQUENCE RESTRUCTURING IN TRITICALE

Miguel Bento¹ Augustine Barão¹; Perry Gustafson²; Wanda Viegas¹; Manuela Silva¹

¹CBAA, Instituto Superior de Agronomia, Technical University of Lisbon, Lisboa; ²Curtis Hall, University of Missouri, Columbia, USA

CONSTRUCTION OF AN SSR-BASED LINKAGE MAP FOR CYNARA CARDUNCULUS

Ezio Portis¹ Alberto Acquadro¹; Davide Scaglione¹; Giovanni Mauromicale²; Rosario Mauro²; Chris A. Taylor³; Steven J. Knapp³; Sergio Lanteri¹

¹DIVAPRA, Plant Genetics and Breeding, University of Torino, Italy; ²DACPA, Scienze Agronomiche, University of Catania, Italy; ³Institute for Plant Breeding, Genetics, and Genomics, University of Georgia, USA

SEX-DEPENDENT DIFFERENCES IN TRANSCRIPTION OF TRANSPOSABLE ELEMENTS IN A DIOECIOUS PLANT SPECIES

Tomas Cermak¹ Roman Hobza¹; Zdenek Kubat¹; Boris Vyskot¹; Eduard Kejnovsky¹

¹Institute of Biophysics, ASCR, v.v.i.

MECHANISMS OF HAPLOTYPE DIVERGENCE AT THE RGA08 NBS-LRR LOCUS IN WILD BANANA (MUSA BALBISIANA)

Genome structure, evolution and comparative genomics

Franc-Christophe Baurens¹

¹CIRAD