Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation: application to stemflow of banana (Musa spp.) plant

Charlier Jean-Baptiste, Moussa Roger, Cattan Philippe, Cabidoche Yves-Marie, Voltz Marc. 2009. Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation: application to stemflow of banana (Musa spp.) plant. Hydrology and Earth System Sciences, 13 (11) : pp. 2151-2168.

Journal article ; Article de revue à facteur d'impact Revue en libre accès total
Published version - Anglais
Use under authorization by the author or CIRAD.

Télécharger (5MB) | Preview


Abstract : Rainfall partitioning by vegetation modifies the intensity of rainwater reaching the ground, which affects runoff generation. Incident rainfall is intercepted by the plant canopy and then redistributed into throughfall and stemflow. Rainfall intensities at the soil surface are therefore not spatially uniform, generating local variations of runoff production that are disregarded in runoff models. The aim of this paper was to model runoff at the plot scale, accounting for rainfall partitioning by vegetation in the case of plants concentrating rainwater at the plant foot and promoting stemflow. We developed a lumped modelling approach, including a stemflow function that divided the plot into two compartments: one compartment including stemflow and the related water pathways and one compartment for the rest of the plot. This stemflow function was coupled with a production function and a transfer function to simulate a flood hydrograph using the MHYDAS model. Calibrated parameters were a "stemflow coefficient", which compartmented the plot; the saturated hydraulic conductivity (Ks), which controls infiltration and runoff; and the two parameters of the diffusive wave equation. We tested our model on a banana plot of 3000m2 on permeable Andosol (mean Ks=75mmh?1) under tropical rainfalls, in Guadeloupe (FWI). Runoff simulations without and with the stemflow function were performed and compared to 18 flood events from 10 to 140 rainfall mm depth. Modelling results showed that the stemflow function improved the calibration of hydrographs according to the er- Correspondence to: J.-B. Charlier ( ror criteria on volume and on peakflow, to the Nash and Sutcliffe coefficient, and to the root mean square error. This was particularly the case for low flows observed during residual rainfall, for which the stemflow function allowed runoff to be simulated for rainfall intensities lower than the Ks measured at the soil surface. This approach also allowed us to take into account the experimental data, without needing to calibrate the runoff volume on Ks parameter. Finally, the results suggest a rainwater redistribution module should be included in distributed runoff models at a larger scale of the catchment. (Résumé d'auteur)

Mots-clés Agrovoc : Musa, Eau de ruissellement

Mots-clés géographiques Agrovoc : Guadeloupe

Classification Agris : P10 - Water resources and management
P11 - Drainage
U10 - Mathematical and statistical methods
F01 - Crop husbandry

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Charlier Jean-Baptiste, Université de Franche-Comté (FRA)
  • Moussa Roger, INRA (FRA)
  • Cattan Philippe, CIRAD-PERSYST-UPR Systèmes bananes et ananas (GLP)
  • Cabidoche Yves-Marie, INRA (GLP)
  • Voltz Marc, INRA (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2020-09-24 ]