Evaluation of Altitude Cassava for the Starch Production in Colombia.

Dufour Dominique, Dufour Elodie, Andres Escobar, Andres Giraldo, Teresa Sanchez

15th Triennial International Symposium of the International Society for Tropical Root Crops (ISTRC)

Tropical Roots and Tubers in a Changing Climate: A Convenient Opportunity for the World
ISTRC - CIP - UNALM, 2-6 November 2009, Lima, Peru.
Highland Cassava Study: Diagnostic
Highland Cassava Study: Diagnostic

- 1500 - 2200 meters above sea level
- Cassava double purpose: good eating quality and industrial for starch processing
- Unique breadmaking capacity of highland fermented cassava starch
- Attractive market in Colombia
Highland Cassava Study: Diagnostic

- Low yield, high price of traditional cassava roots
- Harvesting 14 – 16 months
- Shortage of cassava roots for starch agro-industry in Colombian highland
- Low impact of pests and diseases in altitude
- Cassava improvement in CIAT
- Evaluation of new hybrids varieties
Highland Cassava Study: Methods

- 33 clones adapted to highland ecosystem
- 1750 m above sea level
- Cyanide content
- Eating quality
- Dry matter evaluation
- Root specific gravity (density)
- Starch content
- Starch functional properties
Highland Cassava Study: Results

<table>
<thead>
<tr>
<th>Variety</th>
<th>Root Yield (MT/Ha) (Media 3 harvest)</th>
<th>Root Yield (MT/Ha)</th>
<th>Starch Yield (MT/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 1834-20</td>
<td>30,0</td>
<td>32,11</td>
<td>8,03</td>
</tr>
<tr>
<td>SM 1495-5</td>
<td>25,3</td>
<td>30,03</td>
<td>7,64</td>
</tr>
<tr>
<td>CM 7595-1</td>
<td>26,6</td>
<td>30,00</td>
<td>7,85</td>
</tr>
<tr>
<td>SM 1058-13</td>
<td>27,3</td>
<td>27,30</td>
<td></td>
</tr>
<tr>
<td>SM 1495-5</td>
<td>26,6</td>
<td>25,30</td>
<td>5,04</td>
</tr>
<tr>
<td>CM 7595-1</td>
<td>28,3</td>
<td>25,25</td>
<td>6,66</td>
</tr>
<tr>
<td>SM 1498-4</td>
<td>28,3</td>
<td>25,10</td>
<td>7,77</td>
</tr>
<tr>
<td>SM 1707-41</td>
<td>20,8</td>
<td>19,43</td>
<td>5,39</td>
</tr>
<tr>
<td>SM 1713-25</td>
<td>23,7</td>
<td>15,07</td>
<td>4,47</td>
</tr>
<tr>
<td>CG 402-11</td>
<td>25,9</td>
<td>13,22</td>
<td>3,40</td>
</tr>
<tr>
<td>MCol 1522</td>
<td>17,7</td>
<td>8,10</td>
<td>1,53</td>
</tr>
<tr>
<td>SM 1938-12</td>
<td>22,7</td>
<td>7,90</td>
<td>2,33</td>
</tr>
</tbody>
</table>
Cyanide content

- Low cyanide content < 100 ppm
 (SM 1498-4 : 31 ppm)

- Exception:
 SM 1058-13 : 324 ppm (bitter taste)
 CG 402-11 : 183 ppm (bitter taste)
Highland Cassava Study : Results

Sensory evaluation

- Media = 3.9 (scale 1 to 5)

- Very good gustative quality for human consumption
 - CM 7595-1 always > 4.5
 - SM 1707-41 ; SM 1713-25 : always > 4

- Only two bitter varieties
 - SM 1058-13
 - CG 402-11
Highland Cassava Study: Results

- **32% < Dry matter < 42%; (media: 38%)** (High for cassava around 33% in the World cassava germplasm held in CIAT)
 - SM 1713-25 (44.0%)
 - SM 1498-4 (43.4%)
 - SM 1707-41 (41.7%)
 - CM 7595-1 (41.0%)

- **52% < Starch content < 95%; (media 82%)**
 - SM 1053-23 (91.5%)
 - SM 1713-25 (91.1%)
 - SM 1707-41 (89.1%)
 - CM 7595-1 (89.1%)

- **61% < Starch extraction yield < 100%; (media: 89.3%)**
 - SM 1938-12 (99.9%)
 - MCol 1522 (99.9%)
 - SM 1834-20 (98.6%)
 - SM 1495-5 (98%)
Highland Cassava Study: Results

Correlations

<table>
<thead>
<tr>
<th></th>
<th>Starch (%)</th>
<th>Density</th>
<th>Extaction Yield</th>
<th>Cyanide content (ppm)</th>
<th>Taste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (%)</td>
<td>Pearson correlation</td>
<td>0.418 (**)</td>
<td>0.882 (**)</td>
<td>0.674 (**)</td>
<td>-0.453 (**)</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>64</td>
<td>46</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>Starch (%)</td>
<td>Pearson correlation</td>
<td>1</td>
<td>0.442 (**)</td>
<td>0.231 (*)</td>
<td>-0.317 (**)</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>46</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>Density</td>
<td>Pearson correlation</td>
<td>1</td>
<td>0.639 (**)</td>
<td>-0.388 (**)</td>
<td>0.562 (**)</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Extaction Yield</td>
<td>Pearson correlation</td>
<td>1</td>
<td>-0.491 (**)</td>
<td>0.582 (**)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td></td>
<td>76</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Cyanide content (ppm)</td>
<td>Pearson correlation</td>
<td>1</td>
<td></td>
<td>-0.371 (**)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Highland Cassava Study: Results

Dry Matter (%) vs. Specific gravity (Density)

- Equation: $y = 210.3x - 197.64$
- $R^2 = 0.8355$
Highland Cassava Study: Results

\[y = 0.6538x - 1.1254 \]
\[R^2 = 0.5455 \]
Highland Cassava Study: Results

Highland cassava starch Viscoamylogram (5%)

![Graph showing a viscoamylogram for Highland cassava starch, with labels for Maximum viscosity, Final Viscosity, Minimum Viscosity, and Pasting temperature.](image)
Highland Cassava Study : Results

Cassava starch viscoamylogram variability from Highland cassava (Popayan - 1750 m)
Highland Cassava Study: Results

Cassava starch viscoamylogram variability from World Cassava Germplasm (WCG - CIAT - 1000 m)

More than 4000 clones analysed
Highland Cassava Study: Results

- Highland cassava starch functionality (5% gels)
 - Lower Pasting temperature around 60°C versus 65°C for WCG
 - Two picks in RVA
 - Higher viscosity of gels around 1120cP versus 780cP for WCG
 - Peak time and ease of cooking higher
 - No difference in swelling power at 75°C but higher at 90°C
Highland Cassava Study: conclusions

CIAT highland cassava hybrid
- Improved root productivity (T/ha)
- High dry matter and starch
- Low cyanide, good for direct human consumption
- Double purpose: fresh consumption & industrial
- Starch productivity not only related to dry matter content and root productivity, but also with extractability of starch
Highland Cassava Study: conclusions

CIAT highland cassava hybrids

- Preference of varieties different from growers, starch industrial, consumers of fresh roots

<table>
<thead>
<tr>
<th>Farmers</th>
<th>Industrial "rallandero"</th>
<th>Fresh cassava roots consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starch extraction yield</td>
<td>Dry matter</td>
</tr>
<tr>
<td>SM 1834-20</td>
<td>SM 1834-20</td>
<td>SM 1713-25</td>
</tr>
<tr>
<td>SM 1495-5</td>
<td>CM 7595-1</td>
<td>SM 1498-4</td>
</tr>
<tr>
<td>CM 7595-1</td>
<td>SM 1498-4</td>
<td>SM 1707-41</td>
</tr>
<tr>
<td>SM 1058-13</td>
<td>SM 1495-5</td>
<td>CM 7595-1</td>
</tr>
</tbody>
</table>

- Differences of starch functional properties, may contribute to explain the unique breadmaking capacity of highland cassava starch
Thanks for your attention and for the colombians contributors of the study.