Engineered transfer of the PKS/NRPS biosynthesis pathway of albicidin: a promising approach to overproduce this potent antibiotic

Cociancich S\(^1\), Vivien E\(^1\), Pitorre D\(^1\), Duplan S\(^1\), Pieretti I\(^1\), Gabriel DW\(^2\), Rott P\(^1\) and Royer M\(^1\)

\(^1\)CIRAD, UMR BGPI « Biologie et Génétique des Interactions Plante-Parasite », TA 41/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France. \(^2\)Department of Plant Pathology, University of Florida, Gainesville, Florida 32611.

Xanthomonas albilineans, which causes leaf scald disease of sugarcane, produces a highly potent pathotoxin and antibiotic called albicidin that was shown to inhibit DNA replication in both sugarcane proplastids and *Escherichia coli*. Low yields of albicidin production in slow growing *X. albilineans* have slowed studies of its chemical structure and potential therapeutic applications. Albicidin is synthesized by a unique hybrid PKS/NRPS (polyketide synthase/nonribosomal peptide synthase) pathway that does not resemble any other described to date. We report here the transfer of the entire 49 kb albicidin biosynthetic gene cluster from *X. albilineans* into *X. axonopodis* pv. *vesicatoria* and the subsequent production of an antibiotic active against *E. coli* that shows cross-resistance with albicidin. The yield of this antibiotic in *X. axonopodis* pv. *vesicatoria* is 6 times higher than in *X. albilineans*. This study demonstrates the feasibility to transfer the albicidin pathway into an heterologous host and offers a promising strategy to overproduce, characterize and explore potential therapeutic applications of this potent antibiotic.