Beyond tillering: yield slipping down the sink

Tanguy Lafarge
Thursday Seminar, IRRI, 3 December 2009
Leaf and tiller count

- leaf 1
- leaf 2
- leaf 3
- leaf 4
- leaf 5
- leaf 6
- leaf 7
- tiller 1
- tiller 2
- tiller 3
- main tiller
Outline

- Early tillering
- Rapid tillering
- Early cessation in tillering emergence
- Tillering plasticity at later stage
- Tillering and the unknown
- Compensation and selecting for yield components
- General conclusion
There is room for improvement at early stage by growing seedlings with higher SLA (better weed competitiveness)
Early tillering: seedling age at transplanting and leaf area growth

Farmers’ practice:
- 20 to 30 days-old seedlings at transplanting
- 3000 to 10 000 seeds m\(^{-2}\) inside the nursery

IR72 in the main field, shots taken 34 days after sowing for all 3 situations

Transplanting, hill spacing 20 x 20 cm

- Transplanted 7 days after sowing
- Transplanted 14 days after sowing
- Transplanted 21 days after sowing

Tillering and biomass were favored when transplanting young seedlings
Early tillering: seedling age at transplanting and grain yield

- Tiller emergence resumed right after transplanting whatever the density and age

- Tiller emergence was delayed if extended growth duration or high density in the nursery

Grain yield was gradually reduced with respect to the increase in the age at transplanting or in the seed rate

High seed density and extended stay in the nursery induced a delay in tiller emergence and a reduction in grain yield
Early tillering: plasticity in SLA as a support of tillering

Transplanting 35-days old seedlings

Growing 10,000 seedlings m\(^{-2}\) in the nursery

SLA increased with the density in the nursery

- SLA was maintained at a high value in case of an extended stay in the nursery

- SLA is highly responsive to plant competition at early stage which favored tiller production in the nursery and in the main field

- Tillering resumed at a high rate right after transplanting
Outline

• Early tillering
• **Rapid tillering**
• Early cessation in tillering emergence
• Tillering plasticity at later stage
• Tillering and the unknown
• Compensation and selecting for yield components
• General conclusion
Rapid tillering: characteristic of the high-yielding genotypes

Early and rapid tillering is already a characteristic of hybrids and inbreds

Lower tiller emergence rate

Synchrony in maximum tillering

Delayed maximum tillering

Early tillering and leaf area closure are crucial for high biomass accumulation and high yield

NPT and LTG: low biomass accumulation because of reduced tillering capacity and more vigorous organs at early stage

Correlation of grain yield with leaf area index at early stage when comparing a range of hybrids and inbreds
Rapid tillering: plasticity of SLA as a buffer to trigger tillering

Shading event (70%) were established for short periods of 9 days in Rad1 and Rad2

- SLA increased rapidly as a response to shading during the vegetative phase
- SLA was back to the control value as soon as the shading was removed at early stage
- Tiller production was maintained for a short period before being affected

Lower plasticity of SLA if a stress occurs around panicle initiation probably because of the competition between sinks

The high plasticity of SLA can sustain tiller production for a while at early stage. The plasticity of SLA is reduced at later stage
Outline

• Early tillering
• Rapid tillering
• Early cessation in tillering emergence
• Tillering plasticity at later stage
• Tillering and the unknown
• Compensation and selecting for yield components
• General conclusion
Early cessation of tillering: better sink regulation at early stage

Comparing partitioning coefficients of 3 hybrids and 3 inbreds of the same phenology

Calculation of blade partitioning coefficient:

\[\text{Blade PC} = \frac{\Delta w_{\text{blade} 2 \to 1}}{\Delta \text{time}_{2 \to 1}} \]

Hybrid: early cessation in tiller emergence is associated with earlier partitioning in favor to culm

Earlier cessation in tiller emergence may generate an increase in reserves stored in the culm and remobilized during grain filling
Early cessation of tillering: better sink regulation at early stage

Tiller emergence is affected by water depth: an increase in water depth at mid-tillering until booting stage triggers an earlier cessation of tiller emergence.

Extended tiller emergence under AWD is associated with delayed culm growth and possibly less reserves storage.
Outline

• Early tillering
• Rapid tillering
• Early cessation in tillering emergence
• Tillering plasticity at later stage
• Tillering and the unknown
• Compensation and selecting for yield components
• General conclusion
Tillering plasticity at later stage: associated with SLA plasticity...

...in response to high seedling density

Comparing dynamics of 7-days old and 35-days old seedlings

...in response to extended shading

Production of tillers is favored to the detriment of organ vigor under limited access to radiation in the field
Tillering plasticity at later stage: emergence of extra tillers...

...in response to early tiller loss

Removal of primary tillers 3 and 4 at their emergence

Higher production of secondary and tertiary tillers attached to primary tillers 5 and 6

...in response to water drainage

Successive water drainage periods before and after flowering

Successive tiller loss in aerobic conditions and tiller emergence in flooded conditions
Tillering plasticity at later stage: emergence of extra tillers...

...in response to heat

Initial panicle totally sterile at maturity because of heat

Panicles newly formed after flowering

Newly formed tillers attached to upper nodes of the mother tiller

...in response to pest injury

Newly formed tillers to overcome the loss of damaged tillers by stem borers

Rubia et al, 1996
Outline

• Early tillering
• Rapid tillering
• Early cessation in tillering emergence
• Tillering plasticity at later stage
• Tillering and the unknown
• Compensation and selecting for yield components
• General conclusion
Tiller origin

T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Maximum tiller number in each colony

Can we breed for plants with primary tillers 2?

The higher SLA, the higher leaf area

There is still room to increase SLA

Can higher plant SLA trigger production of tillers from leaf 2?

Shading in the field at early stage

The distribution of tillers per plant highlights that there is no production of tillers from the bud 2 of the main tiller
Tillering and the unknown: going for a more plastic architecture?

Is the plant able to adapt its tiller orientation according to access for light in the rice canopy?

- Same and weak sensitivity of hybrids and inbreds among 16 contrasted genotypes to intra-plant competition:
- No adaptation of IRRI hybrids/inbreds to direct-seeding
 - All high-yielding genotypes were bred under transplanting
 - Minimal Genotypes x Establishment interaction

Can we breed for plants with plastic tiller orientation?
Tillering and the unknown: advancing the cessation in tillering?

Gathering data from the wet and dry seasons, seedling age at transplanting of 7, 14 and 21 days, from contrasted water depth (3 to 10 cm) and plant densities (25 to 100 plant m$^{-2}$)

No correlation between cessation of tillering and...

...the LAI value at maximum tillering

...the time of panicle initiation

Cessation of emergence of secondary and tertiary tillers occurs later than that of primary tillers

Predicting cessation of tillering with a mechanistic crop model?

Can an earlier cessation in tillering increase in grain yield?
Tillering and the unknown: accumulation or remobilization?

Tropical conditions: improving remobilization

China: increasing biomass accumulation

Desire traits of China’s super rice:
- 3-4 leaf tips above the panicle
- low position of the panicle
- erect tillers and leaves
- delayed leaf senescence
- moderate plant height

Stronger stem and higher reserves storage

In subtropical conditions in China, the main objective is to increase biomass accumulation during grain filling.

In tropical conditions, is sink regulation the main improvement to focus on?
Comparing the main traits supporting higher hybrid rice performance in the tropics in contrasted conditions: shoot biomass or harvest index (or sink strength index, SSI)?

<table>
<thead>
<tr>
<th>Year/ Season</th>
<th>GY (t/ha)</th>
<th>ShDW m⁻²</th>
<th>HI</th>
<th>SSI (g cm g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 DS</td>
<td>H (7)</td>
<td>11.03 a</td>
<td>2108 a</td>
<td>0.54 a 175 a</td>
</tr>
<tr>
<td>Transplanting</td>
<td>I (6)</td>
<td>9.48 b</td>
<td>1932 b</td>
<td>0.50 b 145 b</td>
</tr>
<tr>
<td>2006 DS</td>
<td>H (3)</td>
<td>8.45 a</td>
<td>1780 a</td>
<td>0.51 a 150 a</td>
</tr>
<tr>
<td>Staggered</td>
<td>I (3)</td>
<td>7.53 b</td>
<td>1634 a</td>
<td>0.45 b 102 b</td>
</tr>
<tr>
<td>2006 DS</td>
<td>H (2)</td>
<td>8.49 a</td>
<td>1587 a</td>
<td>0.55 a 156 a</td>
</tr>
<tr>
<td>AWD genotypes</td>
<td>I (3)</td>
<td>8.44 a</td>
<td>1611 a</td>
<td>0.52 b 133 b</td>
</tr>
<tr>
<td>2005 DS</td>
<td>H (2)</td>
<td>7.16 a</td>
<td>1959 a</td>
<td>0.45 a 114 a</td>
</tr>
<tr>
<td>Braodcasting</td>
<td>I (2)</td>
<td>5.94 b</td>
<td>1820 a</td>
<td>0.42 a 93 b</td>
</tr>
<tr>
<td>2004 WS</td>
<td>H (5)</td>
<td>5.93 a</td>
<td>1885 a</td>
<td>0.45 a 140 a</td>
</tr>
<tr>
<td>Wet season</td>
<td>I (7)</td>
<td>5.35 b</td>
<td>1748 b</td>
<td>0.42 b 117 b</td>
</tr>
</tbody>
</table>

The partitioning efficiency (SSI) is significantly higher with hybrids in all the situations while the shoot biomass is higher only in 2 of the 5 situations.

SSI at maturity can be used more accurately than harvest index to discriminate plants in their ability to partition biomass efficiently.

In tropical conditions, sink regulation seems to play a major role in supporting higher hybrid performance.
Tillering and the unknown: is a high tillering efficiency useful?

Tillering efficiency (TilE):

\[\text{TilE} = \frac{\text{productive tillers}}{\text{total tillers}} \]

Transplanting young seedlings is associated with higher tiller mortality because of higher maximum tillering.

Tiller mortality concerns:
- young tillers, then low plant biomass
- small tillers, then low-competitive tillers for access to light with the taller tillers
- green tillers intercepting light inside the canopy for their own use

Is a low ratio of tiller efficiency correlated with lower grain yield?
Tillering and the unknown: is a high tillering efficiency useful?

No positive correlation is observed between grain yield and TilE across genotypes.

Manual removal of about 1/3 of the tillers per plant 11 days after panicle initiation.

Grain size was not affected but a strong reduction in filled grain number per plant was reported.

Are non-productive tillers useful to crop production by remobilizing substrates before getting senescent?
Outline

• Early tillering
• Rapid tillering
• Early cessation in tillering emergence
• Tillering plasticity at later stage
• Tillering and the unknown
• Compensation and selecting for yield components
• General conclusion
Selecting for individual traits: dealing with the mutual benefit of opposite traits

- **Unproductive tillers**
 - More efficient use of biomass
 - Higher light interception

- **Plant height**
 - More efficient use of biomass
 - Higher light interception

- **Biomass remobilization**
 - Higher tolerance to lodging
 - Higher grain filling

- **Leaf senescence**
 - Higher light interception
 - Higher biomass remobilization

- **Unfilled spikelets**
 - More efficient use of biomass
 - Higher sink allowance

- **Grain filling duration**
 - More harvested grains
 - Higher biomass accumulation
Selecting for yield components: high compensation phenomenon

Examples of measured field data and possible target components:

<table>
<thead>
<tr>
<th></th>
<th>IR72</th>
<th>NPT</th>
<th>HYB1</th>
<th>HYB2</th>
<th>Target 1</th>
<th>Target 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain yield, t ha⁻¹</td>
<td>8.5</td>
<td>8.2</td>
<td>10.1</td>
<td>9.7</td>
<td>12.0</td>
<td>11.9</td>
</tr>
<tr>
<td>Total panicles/m²</td>
<td>400</td>
<td>250</td>
<td>450</td>
<td>600</td>
<td>350</td>
<td>250</td>
</tr>
<tr>
<td>Total spikelets/pan.</td>
<td>100</td>
<td>150</td>
<td>80</td>
<td>65</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>% filled spikelets</td>
<td>85</td>
<td>80</td>
<td>74</td>
<td>67</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>1000 FiGrDW, g</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>21</td>
<td>25</td>
<td>26</td>
</tr>
</tbody>
</table>

High compensation between yield components (panicle number, grain number per panicle, grain size) indicates that many combinations can produce the same grain yield.

Fixing a quantitative target for a single yield component should not be a strategy for increasing yield potential.

In the objective of designing ideotypes for yield potential, it is needed to combine integrated approaches for complex traits with single-trait approaches for well-recognized traits of interest.
Selecting for yield components: high compensation at tiller level

Old seedlings transplanting and mechanical removal of early tillers reduced the productive tiller number but increased the number of filled grain per tiller.

Mechanical removal of early tillers also increased ‘harvest index’ and fertility rate at the individual tiller level.
Outline

• Early tillering
• Rapid tillering
• Early cessation in tillering emergence
• Tillering plasticity at later stage
• Tillering and the unknown
• Compensation and selecting for yield components
• General conclusion
General conclusion

• **Early and rapid tiller production as an essential plant trait for high yield**
 - through appropriate plant types (high-yielding hybrid rice and improved inbreds in contrast to NPT and LTG introgressed lines)
 - through appropriate crop management (direct-seeding, transplanting young seedlings)
 - opportunity to increase SLA at early stage (high plasticity under shading) and strong correlation reported between SLA and leaf area tend to indicate there is possibility to improve the early dynamics of tillers
 - some genes of interest (*Oshox* gene and *free lysin* gene, Inez Loedin et al, and *AtHOG1* gene, Prakash Kumar et al, University of Singapore) may promote earlier tillering and improved nutrition. This needs to be investigated

• **No architectural plasticity (tiller angle) was observed among high-yielding genotypes for adaptation to contrasting planting design and uneven plant distribution like under broadcasting**
 - it appears necessary to run breeding programs for direct-seeding: this is now the case under the CSISA project
 - this could be a strong justification to screen for plasticity in tiller angle within the gene bank accessions
General conclusion

• **Earlier cessation in tillering as a potential trait to increase carbohydrate storage in culms and subsequent remobilization to during grain filling**

 - this is already observed with hybrid rice, compared to inbreds, and under continuous flooding compared to alternate and drying
 - the cessation in tillering could be associated with the initiation of new sinks that are observed about simultaneously, like the start in internode elongation, the development of the panicle and the storage of reserves. However, no correlation has been reported yet. More investigation is needed
 - it seems reasonable to investigate and look for a proof of concept if earlier cessation in tillering can trigger significant increase in carbohydrate storage. This can be done experimentally as cessation in tillering in cereals is sensitive to change in red/far-red ratio inside the canopy (Ballaré and Casal, 2000). This can also be investigated through simulation modelling via a mechanistic crop model
 - the strategy to breed for New Plant Types (IRRI) and Low Tiller Gene Genotypes (Japan) with the aim at reducing significantly the number of non-productive tillers could have been successful if it would have reduced the number of tillers through an earlier cessation in tillering rather than a reduction in tiller emergence rate

• **Non-productive tillers appear as an important trait of the rice crop in contributing to high yield**

 - no correlation between grain yield and tillering efficiency was reported when looking at many different situations (comparing genetic variability and also crop management practices)
 - non-productive tillers are the smallest ones, the youngest ones, so they are not that competitive against the productive tillers. They are also green which means they are photosynthetically active. They may intercept light that productive tillers cannot access to
 - non-productive tillers may be useful in contributing to high yield if a substantial amount of their biomass is remobilized towards the productive tillers. Remobilization from one tiller to another could be a high value trait for high yield. Such process should be investigated
General conclusion

• High plasticity of the rice crop is a remarkable trait to compensate against unexpected stress conditions
 – SLA plays the role of a buffer and is rapidly modified at the plant level to enhance tillering and leaf area production, like in the case of reduction in access to radiation
 – new productive tillers are developed to overcome tiller loss due to stress damages like in the case of heat and pest injury
 – sink size and fertility rate are increased at individual tiller level to overcome the consequences of an earlier stress on tiller production
 – the rice crop may also be too sensitive to changes in growing conditions: initiation of new tillers under alternate wetting and drying conditions is not a desire trait. If the processes involved in the many responses of tiller plasticity to environmental conditions are different, then some could be blocked while the other would remain untouched

• Improving the sink regulation to partition the shoot biomass even more efficiently seems to be the main option to increase grain yield of the C3 rice in tropical conditions
Big thank you to the whole crew:

• The assistant scientists:
 – Estela Pasuquin, Crisanta Bueno, Brenda Tubana

• The technicians:
 – Pete Gapas, Rene Carandang, Vic Lubigan, Luis Malabayabas, Andrew Revilleza, Elmer Duque, Rechelle Angeles, Julius Ranada

• The secretaries:
 – Bing Laude, Jennifer Hernandez, Emma Fabian

• The scholars:
 – Bancha Wiangsamut, Jessica Bertheloot, Célia Seassau, Marie Bucourt, Zuziana Susanti, Tapeshwar Shah
'It is those scientists that have the understanding of interactions within plants and between plants and dynamic environments that can provide the key link between gene activity and crop yield'

Tom Sinclair, November 2005