Agritrop
Home

Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: Effect of animal housing, manure storage and treatment practices

Rigolot C., Espagnol Sandrine, Robin Paul, Hassouna Mélynda, Béline Fabrice, Paillat Jean-Marie, Dourmad Jean-Yves. 2010. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: Effect of animal housing, manure storage and treatment practices. Animal (Cambridge), 4 (8) : pp. 1413-1424.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_555507.pdf

Télécharger (191kB)

Quartile : Q1, Sujet : VETERINARY SCIENCES / Quartile : Q2, Sujet : AGRICULTURE, DAIRY & ANIMAL SCIENCE

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie

Abstract : A model has been developed to predict pig manure evolution (mass, dry and organic matter, N, P, K, Cu and Zn contents) and related gaseous emissions (methane (CH4), nitrous oxide (N2O) and ammonia (NH3)) from pig excreta up to manure stored before spreading. This model forms part of a more comprehensive model including the prediction of pig excretion. The model simulates contrasted management systems, including different options for housing (slatted floor or deep litter), outside storage of manure and treatment (anaerobic digestion, biological N removal processes, slurry composting (SC) with straw and solid manure composting). Farmer practices and climatic conditions, which have significant effects on gaseous emissions within each option, have also been identified. The quantification of their effects was based on expert judgement from literature and local experiments, relations from mechanistic models or simple emission factors, depending on existing knowledge. The model helps to identify relative advantages and weaknesses for each system. For example, deep-litter with standard management practices is associated with high-greenhouse gas (GHG) production (1125% compared to slatted floor) and SC on straw is associated with high NH3 emission (115% compared to slatted floor). Another important result from model building and first simulations is that farmer practices and the climate induce an intra-system (for a given infrastructure) variability of NH3 and GHG emissions nearly as high as inter-system variability. For example, in deep-litter housing systems, NH3 and N2O emissions from animal housing may vary between 6% and 53%, and between 1% and 19% of total N excreted, respectively. Thus, the model could be useful to identify and quantify improvement margins on farms, more precisely or more easily than current methodologies. (Résumé d'auteur)

Mots-clés Agrovoc : Porcin, Lisier, Fumier, Gaz, Gestion des déchets

Classification Agris : Q70 - Processing of agricultural wastes
U10 - Computer science, mathematics and statistics
L01 - Animal husbandry

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Rigolot C., INRA (FRA)
  • Espagnol Sandrine, IFIP (FRA)
  • Robin Paul, INRA (FRA)
  • Hassouna Mélynda, INRA (FRA)
  • Béline Fabrice, CEMAGREF (FRA)
  • Paillat Jean-Marie, CIRAD-PERSYST-UPR Recyclage et risque (REU) ORCID: 0000-0001-6353-6265
  • Dourmad Jean-Yves, INRA (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/555507/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-02 ]