A MLSA-MLST scheme to investigate the evolutionary dynamics within the Ralstonia solanacearum species complex Emmanuel WICKER¹, Jean-Charles DE CAMBIAIRE¹, Philippe PRIOR² ¹CIRAD, ²INRA – CIRAD

- Ralstonia solanacearum : responsible for heavy losses on cash and subsistence crops throughout tropical and temperate areas (bacterial wilt, potato brown rot, Moko disease)
- High genotypic and phenotypic plasticity :
 - emergence of new devastating pathotypes, plant resistance breakdown
 - occurence of horizontal gene transfer *in planta* BUT no information available on the real population structures
- Phylogeny based on endoglucanase (Egl) partial sequence analysis, confirmed by CGH data => 4 phylotypes

UMR PVBMT CIRAD-Université Réunion, Saint Pierre de la Réunion, France

- Precise the intraspecific phylogeny: are phlyotypes further subdivided in distinct clades ?
- Assess the contributions of recombination in the evolutionary dynamics of *R.solanacearum*

Multi-Locus Sequence Analysis

- 92 *Ralstonia* strains : (i) 90 *R.solanacearum* of the 4 phylotypes and various ecotypes, (ii) type strains of *R.insidiosa* and *R.pickettii*
- 8 single-copy and evenly distributed genes : housekeeping, chromosome (*leuS*, *rplB*, *gdhA*, *gyrB*, *adk*, *mutS*); virulence-related, megaplasmide (*Egl*, *fliC*)
- Test for recombination (RDP), phylogeny reconstruction by NJ, ML, MP

Nucleotide divergence (Jukes-Cantor, 4995 positions)						
	I	П				
	3.77%					
	1.95%	3.68%				
IV	3.33%	4.36%	4.17%			

	լոիյ	Παριοιγρες	sites		lotal	Synonymous	synonymous		
adk	468	54	6.838	0.013	0.020	0.063	0.007	0.800	0.120
gyrB	423	65	22.695	0.045	0.028	0.091	0.011	-1.451	0.117
gdhA	966	59	22.981	0.045	0.027	0.091	0.009	-1.633	0.096
leuS	735	49	18.503	0.036	0.025	0.086	0.009	-1.244	0.099
rplB	738	42	13.686	0.027	0.033	0.124	0.005	0.340	0.033
mutS	651	47	28.111	0.055	0.036	0.133	0.009	-1.692	0.076
fliC	348	39	12.356	0.024	0.023	0.063	0.011	-0.431	0.230
Egl	666	60	26.426	0.052	0.055	0.125	0.036	-0.053	0.273

Theta per site (Watterson estimate)

Nucleotide diversity, after Jukes&Cantor correction

Not significant (P>0.05)

nymous (s) et non-synonymous (a) substitution rate calculated by the Nei&Gojobori (1986) method

Multi-Locus Sequence Typing

- Determination of allele profiles (sequence types) for each gene (DnaSP)
- Detection of homologous recombination by assessment of linkage disequilibrium (I_{Δ}^{S})
- BURST approach (START2, E-BURST)

0.5

Clonal Strains Phylotype/ecotype Complex

Maximum Likelihood tree estimated under the TIM+I+G model using the concatenated sequences of six housekeeping genes (chromosome) from 92 *Ralstonia strains*. Robustness of the nodes was evaluated by bootstraping (1000 replications).

Clades were defined within phylotypes according to their phylogenetic relevance (bootstrap values over 80%)

1	RUN0009, 0030, 0203,0 454,0585, UW588, UW595	IIA, clade 2 (seqvar6, 35, 52) BW and Moko strains from Guatemala, Venezuela, Carribean, Cameroon
2	RUN0016, 0017,0018, 0262,0568	IIB, clade 4 (sequevar 4&4NPB) Moko strains from Peru, emerging strains from Martinique
3	UW551, IPO1609, RUN0041, RUN0160, RUN147	IIB, clade 5 (sequevar 1) Brown rot strains from Kenya, Cameroon, Nigeria, Réunion, Netherlands)
4	K60, AW1, Rs5, RUN0055	IIA, clade 3 (sequevar 7) BW strains from Kenya, USA
5	RUN0022, 0301	IIA, clade 2 (seqvar24) Moko strains from Brazil
6	RUN0090 &91	l Mulberry strains, China
7	RUN0265, RUN0452	IIB, clade 5 (sequevar 3) Moko strain/Honduras, peanut/ Indonesia
8	RUN0320, 0343	l BW,China & Madagascar

Clonal complexes identified by BURST approach on 87 multilocus sequence types (6 housekeeping genes). 60 singletons were also identified.

Conclusions

Levels of linkage disequilibrium within the different phylotypes

of *R.solanacearum*, as assessed by «standardized association index (\dot{r}_{A}) (Maynard-Smith *et al* 1993), calculated on allelic profiles (grouped STs) of chromosome (6¹loci) and chromosome+megaplasmide (C+M, 8 loci). \vec{l}_{λ} values significanty different from 0 indicated that population was clonal (linkage disequilibrium), whereas not significant values indicated a recombining population structure. All phylotypes= 87 ST; phylotype I = 21 ST; Phylotype II = 41 ST (24 within IIA, 17 within IIB); phylotype III = 14 ST; phylotype IV = 11 ST. NS = not-significant ; * = 0.05>*P*>0.01, ***=P<0.001 (Monte Carlo and parametric methods, 1000 random resamplings) All calculations were done with LIAN software (Haubold & Hudson, 2000).

ll (American)	A	2	Sequevar 7	US biovar 1, bac- terial wilt
	A	3	Sequevars 6, 24, 35,36,39	Moko disease, bacterial wilt
	В	4	Sequevar 4	Moko disease, bacterial wilt (emerging strains)
	В	5	Sequevar 1-2, 3	Brown rot Moko disease
III (African)		6	Sequevars 19-23,29, 42-44,49	Brown rot and bacterial wilt
IV		7	Sequevar 9	R.syzygii
		8	Sequevar 10	BDB & BW
		9?	Sequevar 11	ACH432

- The 4 phylotypes are subdivided in different clades, but DNA divergences observed between phylotypes are below species delineation values
- Phylotypes display different population structures : recombining (phylotype I), slightly clonal (phylotype III), highly clonal (phylotype II)
 - confirm LD analyses done on field populations in Trinidad (REP-PCR) data, Ramsubhag et al in prep)
 - clonality in phylotype II = associated to long distance dissemination by ornementals and tubers ?

Consequences in resistance durability, emergence risk?