Direct seeding in mulch cropping systems. Do they fit into farms of the mountainous area of Vietnam?

Dang Dinh Quang, Damien Jourdain, François Affholder, Aymeric Ricome, Marion Morize, To Phuc Tuong
Agricultural systems: 1) in the context of subsistence farming

- Upland rice with declining yields and increasing labour demand for weeding
- Low fertilizer use, low potential varieties
- Pressure on the slopes
- Forest clearing
- Forest clearing
- Erosion
- Paddy Rice < household needs
- Land allocation + Ban on Slash and Burn

Paddy fields

Slash-and-burn on degraded forest
- 3 to 5 years of rice
- then cassava
- then shorter and shorter fallow periods

Free grazing - degraded pastures

Houses
Gardens, orchards
Husbandry
Slope = source of revenue. Goals of farmers may be maximizing income on the short term, ignoring long term evolution of natural resources.

High fertilizer input, high potential cultivars, +pesticides, herbicides, mechanization

Intensive Paddy fields providing food + possibly income

Pressure on the slopes still existing, sustainability not ensured
Fragile Slopes under pressure
Cropping Systems with cover crops and / or mulch (DMC): a ticket to the doubly green revolution?
Main functions of the proposed innovative cropping systems for slopes (review from O. Erenstein (2003) + KASSA project)

- Protect soil against erosion. **Broadly proven**
- Improve nutrient cycling. Environment x management dependent
- Improve soil structure. Not many studies but all in agreement
- Produce forage. Depends on species used and management
- Reduce weed pressure. Contradictory results
- Reduce labour requirements of CS. Discussed
Known Limitations of DMCs

- Main crop / cover crop competition is critical
- Soil temperature is decreased due to mulch
- Insects and diseases favoured by mulch
- Free grazing animals during dry season
- Changes in the whole farm management
Objectives of our study

• Identify constraints to adoption of DMC
 – At farm level
 – Linked to technical and economical features
 – On a short term perspective

• What changes would favour adoption of DMC:
 – Adjustments of the technique
 – Economic Environment and subsidies
Case studies and experiments
Farm Household Model

Crops

Valley Floor
- rice/rice
- maize/rice

Slopes
- upland rice
- Maize/maize
- cassave
- Etc...

-CSMCs

Livestock
Pigs, cattle, etc

Off Farm labour opportunities

Data on Crop Production
- Yield
- inputs
- labour
- rotations
- market price

Data on Livestock Production

Farm
- Land
- Labour
- Rice needs for food
- cash balance
- objective: food needs to be matched, income to be maximized

- Set of production activities: area (crops), number (animals), off-farm activities

- Income

Optimizing algorithm
Model building

- Typology of farms (constraints to adoption may vary among farms).
- Sampling: 15 farms / Site
- Detailed surveys in sampled farms
 - Identifying and characterizing cropping systems practiced
 - Characterizing farming system
 - Labour force allocation schedule
 - Cash flow
- Modelling representative & contrasted farm types
- Ensure simulated decision matches current set of activities of real corresponding cases
- Simulations: Testing hypothesis in terms of technical management and economic environment
Introduction of DMCs in simulated farms

• Market oriented farms: no adoption of any of the DMC in any of the simulated farms
• Subsistence farms: adoption on small areas of the farms (10-20%):
 – Farm with labor and cash availability adopt maize + mulch
 – Farm constrained in land and with high labour availability adopt maize + mulch and also upland rice + mulch
• Two factors limit adoption by farms in both sites
 – Extra labour needed at peak period
 – Extra need of inputs (fertilizer, mucuna seeds, seed pesticides)
• Additional factor limiting adoption in market oriented farms of Cho Don: Labour productivity is not increased by DMC
Testing technical adjustments

• Assuming labour requirements reduced by half:
 – Mulch collected earlier in the year, when not busy with other farm activity?
 – Less mulch?

• Assuming low cost DMC (cover crop seeds at no cost, P and K fertilizer levels at farmer’s system level)

Combined reductions of labour and input requirements are needed to provoke a change in the results of simulations in favour of mulch techniques (CD + KL)
Conclusions

• Method:
 – better understand low adoption of DMC
 – helped identify what improvements have to be made to the technique
 – suggested that diversity of farms may result in variations in “adoptability” of the proposed innovations

• Need to refine the analysis:
 – Accounting for long term evolution of agronomic performances with/without DMC
 – Comparing DMC with other conservation systems
 – Accounting for variations of agronomic performances of DMC across environments

Modelling CS x environment interactions for upland rice and maize
Gathering straw residues (ex-situ produced mulch)

Creating mulch from previous crop's residues (in-situ produced mulch)

Maize + mulch
2 crops./year

Maize + mulch + Mucuna
2 crops./year

Upland rice + mulch

Maize + mulch
1 crop./year

Cropping systems introduced in the simulations
Results from farm modelling

• Farm resources in land, labour and cash vary greatly between farms
• Opportunity cost high in Chodon for any farm, lower in Dien Bien, in relation with
 – Off farm activities
 – Livestock production
• Choosing to buy rice with money from pigs fed with maize is a “stable” option for market oriented farms (model solution not changed when rainfed rice yields increased by 30%)
Testing changes in economic environment

Changes in the opportunity cost of labour:

- Wages \rightarrow maize but no CSMC due to lack of cash (more pressure on slopes)
- Wages \rightarrow maize replaces rice in lowland (CD); KL: maize with CSMC replaces upland rice (better labour productivity)

• Subsidies to promote the CSMC:
Discussions with farmers

Ranking of constraints to adoption of DMC

1. Cost of seeds / cuttings for cover crops
2. Labour for collecting mulch
3. Pests infestation in mulch systems
4. Cover crop becoming weeds
5. Herbicides costly and dangerous