Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple timescales

Mahecha Miguel D., Reichstein Markus, Jung Martin, Seneviratne Sonia I., Zaehle Sönke, Beer Christian, Braakhekke M.C., Carvalhais Nuno, Lange Holger, Le Maire Guerric, Moors Eddy J.. 2010. Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple timescales. Journal of Geophysical Research. Biogeosciences, 115 (G2), 21 p.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Use under authorization by the author or CIRAD.

Télécharger (2MB)


Abstract : Terrestrial biosphere models are indispensable tools for analyzing the Biosphere-atmosphere exchange of carbon and water. Evaluation of these models using site level observations scrutinizes our current understanding of biospheric responses to meteorological variables. Here we propose a novel model-data comparison strategy considering that CO2 and H2O exchanges fluctuate on a wide range of timescales. Decomposing simulated and observed time series into subsignals allows to quantify model performance as a function of frequency, and to localize model-data disagreement in time. This approach is illustrated using site level predictions from two models of different complexity, Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and Lund-Potsdam-Jena (LPJ), at four eddy covariance towers in different climates. Frequency-dependent errors reveal substantial model-data disagreement in seasonal?annual and high-frequency net CO2 fluxes. By localizing these errors in time we can trace these back, for example, to overestimations of seasonal-annual periodicities of ecosystem respiration during spring greenup and autumn in both models. In the same frequencies, systematic misrepresentations of CO2 uptake severely affect the performance of LPJ, which is a consequence of the parsimonious representation of phenology. ORCHIDEE shows pronounced model-data disagreements in the high-frequency fluctuations of evapotranspiration across the four sites. We highlight the advantages that our novel methodology offers for a rigorous model evaluation compared to classical model evaluation approaches. We propose that ongoing model development will benefit from considering model-data (dis)agreements in the time-frequency domain.

Mots-clés Agrovoc : Écologie, eau, Modélisation environnementale, Cycle du carbone, Dioxyde de carbone, Cycle hydrologique, Évapotranspiration, Écosystème, Modèle de simulation, Atmosphère, Météorologie, Climatologie

Mots-clés géographiques Agrovoc : Monde

Mots-clés complémentaires : Biosphère

Classification Agris : U10 - Computer science, mathematics and statistics
P40 - Meteorology and climatology
000 - Other themes
P01 - Nature conservation and land resources

Champ stratégique Cirad : Hors axes (2005-2013)

Auteurs et affiliations

  • Mahecha Miguel D., Max Planck Institut für Biogeochemie (DEU)
  • Reichstein Markus, Max Planck Institut für Biogeochemie (DEU)
  • Jung Martin, Max Planck Institut für Biogeochemie (DEU)
  • Seneviratne Sonia I., ETH (CHE)
  • Zaehle Sönke, Max Planck Institut für Biogeochemie (DEU)
  • Beer Christian, Max Planck Institut für Biogeochemie (DEU)
  • Braakhekke M.C., Max Planck Institut für Biogeochemie (DEU)
  • Carvalhais Nuno, Max Planck Institut für Biogeochemie (DEU)
  • Lange Holger, Norsk institutt for Skog of Landskap (NOR)
  • Le Maire Guerric, CIRAD-PERSYST-UPR Ecosystèmes de plantations (FRA) ORCID: 0000-0002-5227-958X
  • Moors Eddy J., Alterra (NLD)

Autres liens de la publication

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-04-05 ]