Agritrop
Home

Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes

Bahn M., Reichstein Markus, Davidson Eric A., Grünzweig José M., Jung Martin, Carbone M.S., Epron Daniel, Misson Laurent, Nouvellon Yann, Roupsard Olivier, Savage K., Trumbore Susan, Gimeno C., Curiel Yuste J., Tang J., Vargas R., Janssens I.A.. 2010. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences, 7 (7) : pp. 2147-2157.

Journal article ; Article de revue à facteur d'impact Revue en libre accès total
[img] Published version - Anglais
Use under authorization by the author or CIRAD.
document_557812.pdf

Télécharger (411kB)

Quartile : Q1, Sujet : GEOSCIENCES, MULTIDISCIPLINARY / Quartile : Q1, Sujet : ECOLOGY

Abstract : Soil respiration (SR) constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SRMAT), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SRMAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle. (Résumé d'auteur)

Mots-clés Agrovoc : Respiration du sol, Cycle du carbone, Écosystème, Végétation, Forêt, Savane, Prairie, Zone froide, Zone tempérée, Zone tropicale, Évapotranspiration

Mots-clés géographiques Agrovoc : Monde

Classification Agris : P34 - Soil biology
P40 - Meteorology and climatology
F40 - Plant ecology
K01 - Forestry - General aspects

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Bahn M., Institute of Ecology (AUT)
  • Reichstein Markus, Max Planck Institut für Biogeochemie (DEU)
  • Davidson Eric A., WHRC (USA)
  • Grünzweig José M., Hebrew University of Jerusalem (ISR)
  • Jung Martin, Max Planck Institut für Biogeochemie (DEU)
  • Carbone M.S., UC (USA)
  • Epron Daniel, INRA (FRA)
  • Misson Laurent, CNRS (FRA)
  • Nouvellon Yann, CIRAD-PERSYST-UPR Ecosystèmes de plantations (BRA)
  • Roupsard Olivier, CIRAD-PERSYST-UPR Ecosystèmes de plantations (CRI)
  • Savage K., WHRC (USA)
  • Trumbore Susan, Max Planck Institut für Biogeochemie (DEU)
  • Gimeno C., CEAM [Fundación Centro de Estudios Ambientales del Mediterráneo] (ESP)
  • Curiel Yuste J., Universitat Autonoma de Barcelona (ESP)
  • Tang J., Ecosystems Center (USA)
  • Vargas R., UC (USA)
  • Janssens I.A., Universiteit instelling Antwerpen (BEL)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/557812/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-03 ]