Smallholders and the Environment

An Assessment Tool and Integrated Index for Sustainable Oil Palm Production

Geraldo Stachetti Rodrigues
Embrapa Environment (Brazil)
Unité Performance des Systèmes de Culture de Plantes Pérennes / CIRAD-Persyst (France)
Summary

✓ An initiative for an international network on agro-environmental indicators and sustainability index for oil palm production;

✓ An emphasis on ‘impact measurement’, according to ICOPE’10 thematic;

✓ A detailed introduction to a proposed method for ‘integrated farm sustainability assessment’;

✓ A set of case studies for testing applicability and allowing critical review of the proposed approach;

✓ An opportunity for smallholders to equating their managerial capacities with large scale organizations, favoring a fairer playing field for certification and market insertion.
The Roundtable for Sustainable Palm Oil (RSPO) has strived to assemble the main stakeholders of the sector to propose a set of Principles, Criteria and Indicators (PC&I) for promotion of “Institutional Social Responsibility” in palm oil production.

This very commendable and carefully negotiated procedure lists eight Principles, each comprising a set of Criteria and Indicators (PC&I) that can be checked for conformity relative to production practices and business relations, providing the bases for certification.
A complementary environmental management procedure is now being proposed in a cooperation involving Cirad (Unité Performance des Systèmes de Culture de Plantes Pérennes), Embrapa and partners, in an international network aiming to:

(i) preparing farmers / plantations for certification,

(ii) checking the impacts effected by PC&I adequacy at the field level (i.e., document improvements),

(iii) environmental management decision making on how to promote continuous improvement (Principle 8).
To be amenable as an environmental management and certification preparation tool, an integrated indicator system must conform with a series of requisites:

- Allow assessments in the most diverse rural contexts (from smaller to larger, from family-tended to technically advanced landholdings), in varied environmental settings, at the specific scale of the rural establishment;

- Include indicators relative to the ecological, economic, socio-cultural and management aspects implicated with local sustainable development, meeting the demands of consumers / environmental sectors (and the diversity of PC&I for oil palm);
Express results in a simple and straightforward manner to farmers, rural entrepreneurs, decision-makers, and the general public;

Facilitate the detection of critical control points for management correction;

Be constructed in a user-friendly interface, capable of offering an integrated sustainability index, so contributing toward environmental management and eco-certification, according to the demands of farmers / producers, their organizations and stakeholders in general.
A proposed solution:

Weighted environmental impact assessment system for Oil Palm (APOIA-OilPalm)
APOIA-OilPalm

Sustainability dimensions

Landscape Ecology
Environmental Quality
(atmosphere, water, and soil)
Socio-cultural Values
Economic Values
Management and Administration
A systemic, adequate and sufficient set of objective, quantitative indicators.
• The original system (APOIA-Novorural) has been extensively tested elsewhere in varied contexts and in oil palm evaluation, before being adapted to conform with RSPO’s PC&I;

• The aim is to provide an expeditious field assessment that can be immediately translated into a PC&I conformity checklist, while remaining as a documented, objective and quantitative sustainability assessment for conditions observed in the field;

• The focus is to foster environmental performance, while supporting recommendations on agricultural management for sustainability.

• The present moment is of promoting field trials and dialogue with stakeholders and users, to adapt the system to their particular needs and submit to their approval.
The ‘rural establishment’ (i.e., landholding, plantation) is the spatial scale of evaluation, which is performed analytically and quantitatively in a field survey supported by an integrated set of scaling-checklists;

- Sustainability indices are calculated and expressed as utility values (0-1.0), with sustainability conformity level standardized at 0.7 according to environmental standards and socioeconomic benchmarks;
Typical scaling checklist for Indicator assessment and Utility valuation

<table>
<thead>
<tr>
<th>mg NO₃</th>
<th>Nitrate</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent change NO₃

1. Sinusoidal fit: $y=a+b\cos(cx+d)$
2. Quadratic fit: $y=a+bx+cx^2$

<table>
<thead>
<tr>
<th>Coefficients:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = 0,56$</td>
</tr>
<tr>
<td>$b = 0,58$</td>
</tr>
<tr>
<td>$c = 0,02$</td>
</tr>
<tr>
<td>$d = 1,33$</td>
</tr>
</tbody>
</table>

Best fit equation for Utility

1. Sinusoidal fit: $y=a+b\cos(cx+d)$
2. Quadratic fit: $y=a+bx+cx^2$

<table>
<thead>
<tr>
<th>Utility</th>
<th>mg/L NO₃</th>
<th>percent change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-100</td>
<td>-100</td>
</tr>
<tr>
<td>1</td>
<td>-60</td>
<td>-60</td>
</tr>
<tr>
<td>0,1</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>0,2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0,4</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>0,7</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>0,9</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

| $U\text{-INO}_3 1=$ | $0,92$ |
| $U\text{-INO}_3 2=$ | $0,70$ |

WWW.ICOPE-SERIES.com
Each indicator is constructed according to appropriate field variables, utility correspondence table and transformation function.

Ecological corridors index = (area A/frag A) - (area B/frag B)

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>58</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Ecological corridors / Habitat fragmentation

Table of total area of natural habitats and number of fragments preserved

<table>
<thead>
<tr>
<th>Total area (ha) of natural habitats in the establishment</th>
<th>Number of fragments or patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Logistic model: \(y = \frac{a}{1 + b \exp(-cx)} \)

Best fit equation for Utility

<table>
<thead>
<tr>
<th>Ecological corridors index</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
</tr>
<tr>
<td>-80</td>
</tr>
<tr>
<td>-60</td>
</tr>
<tr>
<td>-40</td>
</tr>
<tr>
<td>-20</td>
</tr>
<tr>
<td>-10</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Utility value

Coefficients:
- \(a = 0.90 \)
- \(b = 0.32 \)
- \(c = 0.20 \)

U-IEcC = 0.83
Several indicators have been included to represent specific Criteria and Indicators proposed by RSPO

<table>
<thead>
<tr>
<th>Local community relations</th>
<th>Mechanisms to ensure respect of stakeholders representatives</th>
<th>Existence of mutually agreed system for conflicts resolution</th>
<th>Mechanisms for prevention of discrimination of any kind</th>
<th>Mechanisms for prevention of sexual harassment and respect to reproductive rights</th>
<th>Mechanisms for warranting fairness in contractual agreements</th>
<th>Contributions to local sustainable development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local community relations index (sum of attributes/total possible) =</td>
<td>0,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILCRel</td>
<td>Utility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,9</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Best fit equation for Utility

Linear fit: $y=a+bx$

Coefficients:

- $a = 0,00$
- $b = 1,00$

$U-ILCRel= 0,67$
Field survey, sampling, and interview
Land uses, natural habitats, agricultural production areas and Rural establishment layout
• Example of “Environmental Management Report” issued to the farmers, which includes a CD-ROM with all complementary field results and recommendations.
A preliminary case study: environmental management in a rural establishment dedicated to oil palm production in Santo Antônio do Tauá (PA - Brasil)
Landscape Ecology Dimension
A very diversified farm

Mean sustainability index = 0.67

Habitats conservation
Productive areas management
Confined/animal husbandry activities
Legal Preserve
Permanent Protection Areas
Fauna corridors
Landscape diversity
Productive diversity
Degraded areas reclamation
Disease vectors
Risk of species protection
Geo-technical hazards
Fire hazard

"Baseline"
Utility value

Landscape Ecology Sustainability Indicators
• Economic Values mean = 0.78

• Socio-cultural Values mean = 0.68

• Management and Administration mean = 0.67
Oil palm production at Ishihara Farm

Sustainability dimensions performance

Rural establishment Sustainability index

0,00 0,25 0,50 0,75 1,00

0,71
Integrated farm sustainability assessment for the environmental management of rural activities

Geraldo Stachetti Rodrigues a,*, Izilda Aparecida Rodrigues b, Cláudio Cesar de Almeida Buschini c, Inácio de Barros c

a Embrapa Labex Europe, Agropolis International, Avenue Agropolis, 34394, Montpellier, France
b Environmental Management Laboratory, Embrapa Environment, Rodovia SP-340, km 127.5, Jaguariaíva (SP), CEP 13820-000, Brazil
c INRA, Unité de Recherche Agropédoclimatique de la Zone Caraïbe, Domaine Ducos, 97170 Petit-Bourg (Guadeloupe), France

ARTICLE INFO
Article history:
Received 19 August 2009
Received in revised form 7 October 2009
Accepted 15 October 2009
Available online xxxx

Keywords:
Environmental impact assessment
Multi-attribute methodology
Sustainable agriculture
Rural development
APOIA-NovoRural

ABSTRACT
Farmers have been increasingly called upon to respond to an ongoing redefinition in consumers' demands, having as a converging theme the search for sustainable production practices. In order to satisfy this objective, instruments for the environmental management of agricultural activities have been sought out. Environmental impact assessment methods are appropriate tools to address the choice of technologies and management practices to minimize negative effects of agricultural development, while maximizing productive efficiency, sound usage of natural resources, conservation of ecological assets and equitable access to wealth generation means. The 'system for weighted environmental impact assessment of rural activities' (APOIA-NovoRural) presented in this paper is organized to provide integrated farm sustainability assessment according to quantitative environmental standards and defined socio-economic benchmarks. The system integrates sixty-two objective indicators in five sustainability dimensions — (i) Landscape ecology, (ii) Environmental quality (atmosphere, water and soil), (iii) Sociocultural values, (iv) Economic values, and (v) Management and administration — impact indices are assessed in these interaction levels (vi) specific
<table>
<thead>
<tr>
<th>Scope of analysis</th>
<th>Case study</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Specific agricultural production system / activity</td>
<td>1.1 Family farming sustainability – horticulture, agro-tourism, fee-fishing</td>
<td>Rodrigues et al., 2003b; Rodrigues et al., 2006b</td>
</tr>
<tr>
<td>1.2 Integrated Fruit Production</td>
<td></td>
<td>Buschinelli et al., 2007; Calegario et al., 2009</td>
</tr>
<tr>
<td>1.3 Precision agriculture</td>
<td></td>
<td>Rodrigues et al., 2008b</td>
</tr>
<tr>
<td>2. Agricultural productive sectors</td>
<td>2.1 Ostrich farming</td>
<td>Rodrigues et al., 2007a; Rodrigues et al., 2008a</td>
</tr>
<tr>
<td>2.2 Oleaginous crops for biodiesel</td>
<td>Rodrigues et al., 2007b; Rodrigues et al., 2009b</td>
<td></td>
</tr>
<tr>
<td>3. Territorial environmental management</td>
<td>3.1 Organic agriculture and agro-tourism sustainable management</td>
<td>Rodrigues et al., 2006a</td>
</tr>
<tr>
<td>3.2 Rural activities in the Mamanguape Protection Area</td>
<td>Rodrigues et al., 2008c</td>
<td></td>
</tr>
<tr>
<td>3.3 Rural establishments around the Caratinga Biological Station</td>
<td>Rodrigues et al., 2008c</td>
<td></td>
</tr>
<tr>
<td>4. Countrywide rural development program</td>
<td>4.1 Integrated natural resources and biodiversity management project, Uruguay</td>
<td>Rodrigues and Moreira-Viñas, 2007a; Rodrigues and Moreira-Viñas, 2007b</td>
</tr>
</tbody>
</table>
- Results of case studies carried out with the APOIA-NovoRural system (n = 177), showing the distribution of sustainability and impact indices.
- Dimensions with stronger correlations, i.e., Landscape ecology (♦ - coef corr = 0.78) and Management & administration (■ – coef corr = 0.62) are emphasized.
APOIA-OilPalm
Field trials in Indonesia - Nucleus (Libo) and Plasma areas (smallholders)

Follow up on the training seminar at SMARTRI

Rodrigues GS¹, Verwilghen A², Widodo RH³, Pujianto³, Caliman JP³ (¹Embrapa, ²Cirad, ³SMARTRI)
Case study results: sustainability indices for selected oil palm landholdings in Riau, Indonesia.
Case study results:

- ✓ opportunity for improvement in Management indicators;
- ✓ important negative impact on Landscape ecology;
- ✓ general improvement in the indicators of Sociocultural values;
- ✓ important positive impact in the indicators of Economic values;
Conclusions

✓ The impact assessment and ensuing sustainability index proposed by the APOIA-OilPalm system can be a practical, expeditious, inexpensive step in the preparation for eco-certification, according to RSPO-defined PC&I;

✓ High levels of correlation were observed between the sustainability indices and all sustainability dimensions except Landscape ecology (negative correlation -0.36) implying that sustainability attributes have been attained at the expense of nature conservation (no surprise, and particular indicators, such as HCVH and Protection of relevant ecological species, may preclude certification);

✓ The simultaneous involvement of smallholders and large scale establishments, with data analysis carried out altogether, imply good malleability both for the set of indicators and for the composite sustainability index provided by the APOIA-OilPalm approach.
Profile

Geraldo Stachetti Rodrigues

stacheti@cnpma.embrapa.br

Brazilian Agency for Agricultural Research
Embrapa Environment

Jaguaríúna, São Paulo, Brazil
Cx.P. 069
CEP 13820-000

1982 Graduation in Ecology (UNESP, Brazil)
1986 Master in Plant Biology (UNESP, Brazil)
1987 Enters Embrapa Environment
1995 PhD Ecology and Evolutionary Biology (Cornell University, USA)
2001 Post Doctorate, Environmental Policy (Univ. Florida, USA)
2002 Head of Research and Development, Embrapa Environment
2007 Coordinating Researcher on Sustainable Agriculture, Embrapa Labex Europe (Montpellier, France) and associate researcher, Cirad-Persyst
ACKNOWLEDGMENTS

- Fundação de Amparo à Pesquisa do Estado de São Paulo
- Conselho Nacional de Desenvolvimento Científico e Tecnológico
- IICA / PROCISUR
- CIRAD, Unité Performance des Systèmes de Culture de Plantes Pérennes
- Embrapa (Unities Environment, Occidental Amazon, Oriental Amazon)

To all farmers and managers of the rural establishments involved in our studies

Thanks!