



## A New Land Use Modelling Architecture: The Nexus Land Use

Thierry Brunelle \*, François Souty †§, Bruno Dorin †‡, Tristan Le Cotty †‡, Patrice Dumas †‡, Philippe Ciais §

"Corresponding author.

Trganisation: Centre International de Recherche sur l'Environnement et le Développement
ddress: Campus du Jardin Tropical
15 bis, avenue de la Belle Gabrielle

Phone: ±33 (0)1 43 94 73 65 - Mail : brunelle@centre-cired.fr 'Centre International de Recherche sur l'Environmement et le Développement 'Centre de Coopération Internationale en Recherche Agronomique pour le Développement



## Introduction

- -Land Use is a crucial issue of climatic decisions in the framework of the REDD+ agreement
- New evaluations, based on integrated large-scale models, are needed to feed decisions-makers
- I'll present here the methodology adopted to develop the Nexus Land Use

And...

- An application to test the integration of food / energy and forest preservation objectives

C.I.R.E.D. UNITÉ MIXTE DE RECHERCHE EHESS ET CNRS - UMR 8568

I. Objectives and specificities of our model





# **Model specificities**

- Feed back from the rest of the economy on the agricultural sector provided by the CGE framework ;
- Consistency between economic and physical realities ;
- Endogenous computation of yields;
- Estimation of the evolution of land use modifications, as well as energetic consumptions of agricultural sector.

## II. Methodology and Hypothesis





# **Hypothesis**

- 1. Conventional agriculture;
- 2. One representative crop which is an agregate of most crops (but not all !);

| in LPJmL  | not in LPJmL             |
|-----------|--------------------------|
| sugarbeet | sugar cane               |
| x         |                          |
| x         |                          |
| X         |                          |
| x         |                          |
|           | x                        |
|           | X                        |
|           | x                        |
|           | X                        |
|           | x                        |
|           | sugarbeet<br>x<br>x<br>x |

3. Arable land divided into classes based on their potential food yield for each of the 12 regions of the model;



# **Hypothesis**

- 1. Conventional agriculture;
- 2. One representative crop which is an agregate of most crops (but not all !) ;

| crop                     | in LPJmL  | not in LPJmL |
|--------------------------|-----------|--------------|
| sugarbeet and sugar cane | sugarbeet | sugar cane   |
| wheat                    | x         |              |
| oil seeds                | X         |              |
| rice                     | X         |              |
| cereal grain nec         | X         |              |
| vegetable                |           | x            |
| fruits                   |           | X            |
| nuts                     |           | x            |
| plant based fibers       |           | X            |
| crop nec                 |           | x            |

- 3. Arable land divided into classes based on their potential food yield for each of the 12 regions of the model;
- 4. For each land classes, actual yields are computed according to :
- Potential yield level ;
- Profit maximisation :  $\Pi_{j}(\rho) = p\rho (p_{\chi} + wL_{CI} + p_{E}E_{CI})CI_{j}(\rho) CF \lambda$   $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$  Production Energy : fertiliser, Capital Land Value machines... Labor Rent
- 5. Optimal level of capital and labor production factors

#### III. Results

A test for integrating food, energy and forest preservation objectives between 2001 – 2030 in the USA

#### Results: Scenarios 2001 - 2030 for the USA

#### STEP 1:

- No modification of dietary habits until 2030 : 4286 kcal/day/pers ;
- Population growth: 0.6% / year;
- Energy prices increases of 3.1% per year;
- Biofuel production corresponding to the national objectives : 50 Mtep  $\,$
- Deforestation at the historical level of appromaxitively 1% per year between 2001 and 2030 ;



|                            | Scenario 1 |  |
|----------------------------|------------|--|
| Cropland pastures surfaces | + 33,45%   |  |
| Pastures<br>surfaces       | + 25,17%   |  |
| Energetic<br>Consumption   | + 31,43%   |  |
| Food Price                 | + 0.44%    |  |

## Results: Scenarios 2001 - 2030 for the USA

#### STEP 2:

- No modification of dietary habits until 2030 : 4286 kcal/day/pers ;
- Ambitious development of biofuel production: 100 Mtep in 2030 (TAR VI IIASA)
- Deforestation at the historical level of appromaxitively 1% per year between 2001 and 2030 ;



|                              | Scenario 1 | Scenario 2 |
|------------------------------|------------|------------|
| Cropland + pastures surfaces | + 33,45%   | + 33,45%   |
| Pastures<br>surfaces         | + 25,17%   | + 23,83%   |
| Energetic<br>Consumption     | + 31,43%   | + 55,52%   |
| Food Price                   | + 0.44%    | + 0.92%    |

## Results: Scenarios 2001 - 2030 for the USA

#### Step 3:

- No modification of dietary habits: 4286 kcal/day/pers.
- Ambitious development of biofuel production: 100 Mtep in 2030 (TAR VI IIASA)
- No deforestation allowed



|                                    | Scenario 1 | Scenario 2 | Scenario 3 |
|------------------------------------|------------|------------|------------|
| Cropland +<br>pastures<br>surfaces | + 33,45%   | + 33,45%   | 0%         |
| Pastures surfaces                  | + 25,17%   | + 23,83%   | + 6,17%    |
| Energetic<br>Consumption           | + 31,43%   | + 55,52%   | + 100.31%  |
| Food Price                         | + 0.44%    | + 0.92%    | + 12,95%   |

# Solutions to bridge the conflict between multiple objectives

- The « Searchinger Solution »: Stop biofuels production
- Reduce loss (or eat less)

|                              | Scenario 1 | Scenario 2 | Scenario 3 | No biofuel | Less Food |
|------------------------------|------------|------------|------------|------------|-----------|
| Cropland + pastures surfaces | + 33.45%   | + 33.45%   | 0%         | 0%         | 0%        |
| Pastures surfaces            | + 25.17%   | + 23.83%   | + 6.17%    | + 6.18%    | + 24.1%   |
| Energetic<br>Consumption     | + 31.43%   | + 55.52%   | + 100.31%  | + 31.32%   | + 50.4%   |
| Food Price                   | + 0.44%    | + 0.92%    | + 12,95%   | + 6.08%    | + 0.6%    |

- Break the relation between yield and energy : the ecologically intensive agriculture
- Find an optimal level of arable land expansion
- Promote trade to grow crops at the best suitable places

Thanks for your attention