

Overall Context

>Increase in world demand for wood products

	1980	2005
Wood production for industry (M m³ yr-¹)	1450	1710
Wood production for Energy (M m³ yr-¹)	1530	1840
Production of cellulose (M t yr ⁻¹)	125	175

http://www.fao.org

In 2000, forest plantations represented 5% of total forest area, but provided 33% of collected wood (Millenium Ecosystem Assessment, 2005)

Main goals and hypotheses

<u>Goals</u>

=> compare the wood production, and C allocations of monospecific stands of Acacia and Eucalypt, and plurispecific stands Acacia/Eucalypt

Hypotheses

- ⇒ a large part of the differences in wood production between monospecific stands is explained by differences in C allocation
- ⇒ The C allocation patterns of each species is modified in mixed- species plantations compared to mono-specific plantations due to inter-specific interactions and shifts in soil N status

Litton et al., 2007

Methodology

Cumulated soil CO2 effluxes

Giardina et al., 2004; Ryan et al. 2004, 2010

Results: Tree Growth

Results: Soil CO₂ effluxes

Results: Soil CO₂ effluxes

Annual Carbon budget (gC m⁻² yr⁻¹)

	Fs	Growth (∆ wood)	Leaf LF	Branch & Bark LF	Total LF	ANPP	TBCA	Lit/ANPP	TBCA/ANPP
Acacia	1111	1592	303	24	327	1919	851	0.17	0.44
Eucalyptus	1232	1268	284	233	517	1785	1115	0.29	0.62
Mixed stand E50%A50%	1306	1045	297	175	472	1516	1178	0.31	0.78
Acacia in Mixed stand		191	52	6	58	249		0.23	
Eucalytus in mixed stand		853	245	169	414	1267		0.33	

- ➤In the stands with the highest wood production, the fraction of ANPP allocated to litter production was the lowest
- > Stands with highest wood production, also allocate proportionally less to the belowground system
- ➤ Allocation patterns explain a large part of the differences in wood production

MAESTRA model

- Simulation of APAR with MAESTRA showed that both at the individual tree scale and the stand scale, light-use efficiency (LUE) is higher for Acacia 100% stands, lowest for mixed stands, and intermediate for Eucalyptus 100% stands
- ➤ Differences in C allocations shown in this presentation explain a large part of these differences in LUE

Perspectives

3) Describe the allocations patterns over a whole rotation => are age-related changes in carbon allocation pattern species-specific?

