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SUMMARY

 

The cruciferous weed 

 

Arabidopsis thaliana

 

 and the causal agent
of black rot disease of Crucifers 

 

Xanthomonas campestris

 

 pv.

 

campestris

 

 (

 

Xcc

 

) are both model organisms in plant pathology.
Their interaction has been studied successfully in the past, but
these investigations suffered from high variability. In the present
study, we describe an improved Arabidopsis–

 

Xcc

 

 pathosystem
that is based on a wound inoculation procedure. We show that
after wound inoculation, 

 

Xcc

 

 colonizes the vascular system of
Arabidopsis leaves and causes typical black rot symptoms in a
compatible interaction, while in an incompatible interaction
bacterial multiplication is inhibited. The highly synchronous and
reproducible symptom expression allowed the development of a
disease scoring scheme that enabled us to analyse the effects of
mutations in individual genes on plant resistance or on bacterial
virulence in a simple and precise manner. This optimized
Arabidopsis–

 

Xcc

 

 pathosystem will be a robust tool for further
genetic and post-genomic investigation of fundamental questions

 

in plant pathology.

 

Arabidopsis thaliana

 

 has become the model plant in the past
15 years, and the number of tools available for it imposes its
use for the study of fundamental questions in plant biology
(Somerville and Meyerowitz, 2004). Numerous studies of plant–
pathogen interactions have used this model crucifer and have
provided considerable information. Although pathosystems of
Arabidopsis with a large number of viral, bacterial and fungal
plant pathogenic micro-organisms have been developed, the
Arabidopsis–

 

Pseudomonas syringae

 

 (

 

P. syringae

 

) system occupies
an outstanding position, both because of the large number of
groups using it and because of the quantity of exciting insights
into fundamental aspects of plant–pathogen interaction it has

provided (Katagiri 

 

et al

 

., 2002; Quirino and Bent, 2003). By con-
trast, our knowledge about the interaction between Arabidopsis
and 

 

Xanthomonas campestris

 

 pv. 

 

campestris

 

 (

 

Xcc

 

), which was
described even before the Arabidopsis–

 

P. syringae

 

 system
(Simpson and Johnson, 1990), is still rudimentary (Buell, 2002).
Many Xanthomonads including 

 

Xcc

 

 have, however, been inten-
sively studied and 

 

Xcc

 

 is a natural pathogen of cruciferous plants
and provokes considerable economical loss by causing black rot
diseases (Alvarez, 2000; Onsando, 1992; Williams, 1980). More-
over, the genome sequence of three different 

 

Xanthomonas

 

 spe-
cies/strains and two closely related 

 

Xylella fastidiosa

 

 strains are
publicly available, which makes 

 

Xanthomonas

 

 an interesting plant
pathogen for comparative genomics (da Silva 

 

et al

 

., 2002; Simpson

 

et al

 

., 2000; Vorholter 

 

et al

 

., 2003). In order to gain a better
understanding of plant–pathogen interactions and to undertake
post-genomic approaches, it is desirable to work with model
species and therefore we made an effort to improve existing,
and to develop new, Arabidopsis–

 

Xanthomonas

 

 pathosystems.
Our group has been working on the Arabidopsis–

 

Xcc

 

 patho-
system for several years. We isolated plant mutants impaired in
resistance to 

 

Xcc

 

 and identified genes involved in the establish-
ment of hypersensitive response (HR) and defence (Godard

 

et al

 

., 2000; Lacomme and Roby, 1999; Lummerzheim 

 

et al

 

., 1993).
Nevertheless, our previous work with the Arabidopsis–

 

Xcc

 

 patho-
system suffered from the fact that only qualitative changes—i.e.
from resistance to susceptibility or from virulence to avirulence—
could be detected. Inoculation was mainly performed by syringe
infiltration of a restricted zone of fully expanded leaves (one-third
of the half leaf) of 4-week-old plants with a bacterial suspension
of 10

 

8

 

 cfu/mL (Lummerzheim 

 

et al

 

., 1993). Plants were grown for
this purpose on Jiffy pots in a growth chamber at 22 

 

°

 

C, with a
9-h light period and a light intensity of 192 

 

µ

 

mol/m

 

2

 

/s. After
inoculation, plants were covered and kept at nearly 100%
relative humidity for 2 days and were subsequently transferred to
70% relative humidity. Plants were scored as resistant if an HR of
the infiltrated zone limited bacterial development, or susceptible
if chlorosis spreading out of the infiltration zone invaded the entire
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leaf, 3–5 days post-inoculation (dpi). Problems associated with
this method (hereafter method 1) are as follows.

 

1

 

The outcome of the interaction depends on the physiological
state of the plants at the moment of inoculation, and on the
environmental conditions after the inoculation: disease will only
be observed if conditions, mainly hygrometry, but also temperature,
are favourable for the pathogen. Resistance, by contrast, will
only be observed if the conditions are not too favourable for the
pathogen.

 

2

 

We can only score qualitatively (resistance or susceptibility)
because of the phenotype observed and because of the variability
observed within a given experiment.

Work on the interaction of 

 

Xcc

 

 with its natural hosts (e.g.

 

Brassica oleracea

 

 and 

 

Brassica napus

 

) has shown that it is a
vascular pathogen (Alvarez, 2000). 

 

Xcc

 

 enters the leaf mainly
via hydathodes at the leaf margin and subsequently colonizes
the xylem vessels. In the mesophyll it is found only at the latest
stages of the infection process (Bretschneider 

 

et al

 

., 1989).
Accordingly, stomatal infiltration is not considered to be the
natural route of infection, and when introduced into leaf mesophyll,

 

Xcc

 

 induced nonspecific symptoms on 

 

Brassica

 

 species instead of
eliciting typical black rot symptoms (Shaw and Kado, 1988). We
therefore speculated that the problems with method 1—in which
bacteria are infiltrated into the leaf mesophyll—are due to the
infiltration technique and that tissue-specific virulence functions
of the bacteria and tissue-specific defence responses of the plant
are important features in the Arabidopsis–

 

Xcc

 

 pathosystem.
In order to test this hypothesis and to develop an inoculation

procedure that gives highly reproducible results and allows their
quantitative analysis, we compared two different techniques on
plants grown as described above: leaf infiltration (method 2), in
which one half of a fully expanded leaf was infiltrated with a
low bacterial inoculum (5 

 

×

 

 10

 

5

 

 cfu/mL); and wound inoculation
(method 3), in which the central vein was pierced three times
with a needle that had been dipped in a bacterial suspension
(10

 

7

 

−

 

10

 

9

 

 cfu/mL). After inoculation, plants were kept in both
cases for 1 day at 100% relative humidity and were then trans-
ferred to 65% relative humidity. Method 2 is commonly used in
the study of Arabidopsis–

 

P. syringae

 

 interaction (Katagiri 

 

et al

 

.,
2002), whereas method 3 is largely employed for the study of the
interaction of 

 

Xcc

 

 with 

 

Brassica

 

 species (Shaw and Kado, 1988;
Vicente 

 

et al

 

., 2001). The tests were done with two different 

 

Xcc

 

strains, which largely gave the same results: strain 147 (

 

Xcc

 

147),
which is commonly used in our group, and strain LMG568/
ATCC33913 (

 

Xcc

 

568), the genome of which has been sequenced
(da Silva 

 

et al

 

., 2002).
When using the leaf infiltration test (method 2) with 

 

Xcc

 

147
and 

 

Xcc

 

568, the inoculated leaf zone became chlorotic 3 dpi and
necrotic 5 dpi on diverse ecotypes of Arabidopsis (Fig. 1A,B
for Col-0 and Sf-2, other ecotype results not shown). Leaves
infiltrated with a mutant strain of 

 

Xcc

 

568, carrying an insertion

in the 

 

hrpG

 

 regulatory gene (XCC1166), remained symptomless
(Fig. 1B, details of the generation of the mutant can be obtained
from the authors upon request). Although we found slight differ-
ences in the timing of symptom development between the
different ecotypes, no qualitative differences could be observed.
Notably, Col-0 and Sf-2, behaved identically. This is different from
the results we obtained with the previous infiltration technique,
method 1, in which Col-0 was resistant and Sf-2 was susceptible
(Lummerzheim 

 

et al

 

., 1993), and which allows the observation of

Fig. 1 Symptoms on Arabidopsis thaliana ecotypes Sf-2 and Col-0 after leaf 
infiltration (method 2) and wound inoculation (method 3) with Xcc strains. Leaf 
infiltration with (A) Xcc147 and with (B) Xcc568 wild-type (wt) or hrpG mutant 
bacteria (hrpG) was done by using a bacterial suspension adjusted to 
5 × 105 cfu/mL. (C) Wound inoculation was performed with Xcc568 wild-type 
(wt) or hrpG mutant bacteria (hrpG) adjusted to 1 × 107 cfu/mL.
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pathogen spreading from the inoculation zone in the compatible
interaction (not observed in the incompatible interaction).

In wound inoculation tests (method 3) with 

 

Xcc

 

568 (Fig. 1C)
and 

 

Xcc

 

147 (data not shown), we observed spreading chlorosis
on ecotype Sf-2 that started 3 dpi with weak chlorosis around the
wound site, developed 5 dpi into V-shaped chlorotic sectors of
varying size that occasionally invaded the entire leaf, and became
necrotic 7 dpi. These symptoms are reminiscent of 

 

Xcc

 

 disease
symptoms observed on cabbage and other 

 

Xcc

 

 hosts belonging
to the Brassicaceae (Shaw and Kado, 1988; Vicente 

 

et al

 

., 2001)
and are in accordance with the previous classification of Sf-2 as
susceptible (Lummerzheim 

 

et al

 

., 1993). The ecotype Col-0, which
we previously classified as resistant, showed no symptoms or, in
rare cases, very weak symptoms. Both ecotypes showed no symptom
development when inoculated with the 

 

Xcc

 

568 

 

hrpG

 

 mutant strain.
In order to correlate symptom development with bacterial

multiplication in the plant, we determined 

 

in planta

 

 bacterial
growth. After leaf infiltration with method 2, we found strong
bacterial growth of 

 

Xcc

 

 strains 147 and 568 on both Col-0 and
Sf-2 plants (Fig. 2A,B). This is in accordance with the symptoms
we observed but it is again contrary to the results we obtained
previously, where we found restriction of 

 

Xcc

 

147 growth on Col-0
(Lummerzheim 

 

et al

 

., 1993). The 

 

Xcc

 

568 

 

hrpG

 

 mutant strain did
not show any 

 

in planta

 

 growth. After wound inoculation (method
3), we only observed bacterial growth in the interactions of the
wild-type strains with Sf-2 and not with Col-0 or the interactions
with the 

 

hrpG

 

 mutant strain (Fig. 2C for 

 

Xcc

 

568, data not shown
for 

 

Xcc

 

147). Multiplication in Sf-2 depended to a large extent
on the initial inoculum. When a bacterial density of 10

 

9

 

 cfu/mL
was used, an overall multiplication of 20–50-fold was observed;
when a suspension of 10

 

7

 

 cfu/mL was used, we found pathogen
multiplication of more than 1000-fold. These results demonstrate
that disease symptom development is truly correlated with
bacterial multiplication and not due to a difference in tolerance
between Sf-2 and Col-0. Moreover, it confirms that Col-0 is resistant
against 

 

Xcc

 

 strains 147 and 568.
Our tests showed that the outcome of the Arabidopsis–

 

Xcc

 

interaction greatly depends on the inoculation procedure. This
supported our hypothesis that different plant tissues are invaded
after the different inoculation procedures and that the outcome
of the rendezvous between plant and bacteria is determined by
the plant tissue-specific responses and by the equipment of 

 

Xcc

 

 for
tissue colonization. When 

 

Xcc

 

 is infiltrated in the mesophyll, defence
mechanisms that restrict the colonization of the vascular system
and that are relevant in a natural context may be less operational
or inefficient in restricting bacterial colonization. This is perhaps
why we found strong bacterial growth of 

 

Xcc

 

 after leaf infiltration
with method 2, whichever ecotype of Arabidopsis was used.

In order to analyse the spatial and tissue-specific aspects of
the Arabidopsis–

 

Xcc

 

 interaction and to verify whether there is
indeed vascular colonization after wound inoculation (method 3)

and mesophyll colonization after leaf infiltration (method 2), we
generated by transposon tagging an 

 

Xcc

 

568 reporter strain,
carrying the LUX operon of 

 

Photorhabdus luminescens

 

 (Winson

 

et al

 

., 1998) and emitting constitutively high luminescence. This
strain showed the same growth characteristics and the same

Fig. 2 In planta bacterial growth of Xcc strains after infiltration (method 2) 
and wound inoculation (method 3). (A) Infiltration of Sf-2 and Col-0 leaves 
with Xcc147 was done at 5 × 105 cfu/mL. (B) Infiltration of Sf-2 (circles) and 
Col-0 leaves (squares) with Xcc568 wild-type (solid) or Xcc568 hrpG mutant 
bacteria (open) was done at 5 × 105 cfu/mL. Bacterial numbers were determined 
as described by Katagiri et al. (2002). (C) Wound inoculation with Xcc568 was 
done at 109 cfu/mL. At the indicated time points, three entire inoculated leaves 
per plant were harvested, weighted, ground and taken up in water. Bacterial 
populations were determined by dilution plating. Each data point represents 
the mean and the standard deviation calculated from four replicates. The 
experiments were repeated at least twice with equivalent results.



 

330 D. MEYER et al.

  MOLECULAR PLANT PATHOLOGY (2005)  6 (3 ) , 327–333 © 2005 BLACKWELL  PUBL ISH ING LTD

virulence as the wild-type strain. By using this reporter strain and
a CCD-video camera (Photonic Science, Robertsbridge, UK), we
could follow the infection process in individual leaves in a nonin-
vasive and very sensitive manner (Fig. 3). Until 36 h after wound
inoculation, leaves showed no luminescence. At 2 dpi, lumines-
cence along the midvein and secondary veins could be observed
in Sf-2 leaves. Thereafter, the luminescence became increasingly
intensive and progressively invaded the leaf vascular system.
Luminescence was present approximately 2 days before symptom
development, and when chlorosis became apparent, strong
luminescence was also found outside the chlorotic region. Within
the chlorotic region, luminescence became rapidly more diffuse
and invaded nonvascular tissue. Uninfected leaves never showed
luminescence, indicating that we do not get systemic infection

of the plant, which is in accordance with the observation that
noninoculated leaves never show Xcc disease symptoms. In
Col-0 plants, we detected no or only very weak luminescence,
which remained restricted to the vascular system close to the wound
site. After leaf infiltration, we also observed strong luminescence,
which was proceeding and accompanying leaf chlorosis in Sf-2
and Col-0, but in this case the luminescence was equally distrib-
uted over the entire leaf blade and did not give any indication of
tissue specificity of Xcc multiplication or differences in susceptibility/
resistance between Col-0 and Sf-2 (data not shown).

Together, these results suggest that Col-0 is resistant against
Xcc strains 147 and 568 when bacteria are directly introduced into
the vascular system by wound inoculation (method 3), whereras
Sf-2 is susceptible. The same differential response was found

Fig. 3 Luminescence imaging illustrates spatial 
aspects of the Arabidopsis–Xcc interaction. 
Arabidopsis leaves were inoculated by wound 
inoculation with an Xcc568 reporter strain 
(107 cfu/mL) that carries the Photorhabdus 
luminescens lux operon and emits constitutively 
high luminescence. Pictures were taken with a 
CCD camera under dark conditions (exposure time 
10 s) and under light conditions at the indicated 
times after inoculation and an overlay of the 
images was generated.
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previously when we used localized high-titre inoculum infiltra-
tion (method1) but could not be reproduced when bacteria were
infiltrated with low-titre inoculum into the mesophyll (method 2).
Wound inoculation proved, in addition, to be much more robust
and clear cut than our former inoculation procedure (method 1).
Our conclusion is that leaf infiltration, commonly used for
P. syringae, is not well suited to study Arabidopsis–Xcc interac-
tions because it does not take into account the tissue specificity
of Xcc infection. It does not allow us to study the vascular tissue-
specific resistance responses on the plant side and virulence
mechanisms allowing xylem colonization on the bacterial side.
Similar conclusions on Xcc pathosystems can be found in the
literature, where the tissue specificity of Xcc in natural infections
has been well documented (Alvarez, 2000) and the importance of
appropriate inoculation procedures for distinguishing between
compatible and incompatible interactions has been highlighted
(Shaw and Kado, 1988; Simpson and Johnson, 1990). The fact
that our wound inoculation procedure closely reflects aspects of
a natural infection process is further reinforced by the following
observation: in a spray-inoculation procedure, Col-0 was found
to be resistant—leaves remained symptomless—whereas Sf-2
showed the development of typical V-shaped chlorosis and
vein darkening (Lummerzheim et al., 1993). This was found to be
associated with extensive multiplication of Xcc in the vascular
system of Sf-2 (data not shown). Thus, our system allows us to
study ecotype-specific responses that seem to operate in the
vascular system of the plant and virulence functions of the
bacteria, contributing to their capability to colonize leaf xylem.

The highly reproducible and synchronous symptom development
after wound inoculation (method 3) prompted us to develop a
symptom annotation procedure, which is based on an individual
score for each inoculated leaf. It allows us to analyse accurately
the effects of mutations in individual genes in the plant or the
bacteria on resistance or virulence, because we can easily and
precisely quantify decreases or increases in resistance and virulence;
this is illustrated in Fig. 4 with two examples. A mutation in the
Arabidopsis HXC2 gene leads to partial loss of resistance against
Xcc strains 147 (Godard et al., 2000) and 568. In accordance with
this, the disease score that we find for hxc2 is much higher than
that of the wild-type Col-0, which is almost 0, but significantly
lower than that of the fully susceptible ecotype Sf-2 (Fig. 4A). A
mutation in the Xcc rpfC gene (XCC1856) leads to a loss of pro-
duction of exopolysaccharides, reduced secretion of hydrolytic
enzymes and reduced Xcc virulence (Slater et al., 2000; Tang
et al., 1991). As expected, an rpfC mutant shows a significantly
reduced disease score on Sf-2 plants as compared with the wild-type
strain. Nevertheless, we do not find complete loss of pathogenicity
as with an hrpG mutant strain, for which the disease score is 0.

In addition to the analysis of the genetic bases of resistance of
Col-0 to Xcc147 and Xcc568 and the identification of the corre-
sponding plant resistance and bacterial avirulence genes, this

new inoculation procedure (method 3) opens the way to address
many exciting questions: is the Arabidopsis resistance response
to Xcc restricted to the vascular system, what is the specificity of
this resistance response and which aspects are shared in com-
mon with the resistance response to other pathogens, vascular or
non-vascular? As a complement to this, it will be interesting to
analyse precisely to what extent signal transduction elements,
known to be implicated in other Arabidopsis resistance
responses, are involved in Xcc resistance. Last but not least, fur-
ther characterization of the hxc mutants that show attenuated
resistance to Xcc (Godard et al., 2000; Lummerzheim et al.,
2004) will benefit from the improvements of this pathosystem. It
is particularly interesting that within the species Xanthomonas

Fig. 4 Quantitative analysis of the interaction phenotype of plant and 
bacterial mutants by disease scoring. Disease symptoms were scored 7 days 
after wound inoculation of (A) Col-0, Sf-2 and hxc2 mutant plants with Xcc568 
wild-type bacteria and of (B) Sf-2 plants with Xcc568 wild-type, rpfC mutant 
and hrpG mutant bacteria. Each inoculated leaf was individually scored as: no 
symptoms = 0; weak chlorosis surrounding the wound sites = 1; strong V-
shaped chlorosis = 2; developing necrosis = 3; leaf death = 4. The 
represented average disease scores and the standard deviations were 
calculated from the values of four plants with four inoculated leaves per plant.
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campestris, the different pathovars raphani (Xcr), armoraciae
(Xca) and campestris have all been described to infect Arabidop-
sis but with different tissue specificities (Hugouvieux et al.,
1998). Whereas Xcc is a vascular pathogen, Xcr and Xca colonize
the mesophyll and in Arabidopsis, as in their natural hosts, cause
leaf spot diseases. A comparative study of those interactions will
be particularly interesting and promises to provide considerable
information on the tissue specificity of bacterial virulence func-
tions and plant resistance responses.

Finally, the availability of the genome sequences of different
Xcc strains and of three strains from other Xanthomonas species
or closely related Xylella species opens the way to the systematic
analysis of virulence functions in the Xcc genome. In this context,
the Arabidopsis–Xcc pathosystem will be particularly valuable
because it permits us to search relatively easily for plant targets
of bacterial virulence factors and to analyse them by molecular,
genetic and cell biological approaches. This can only be done
in a model plant and not on the natural hosts of Xcc or other
Xanthomonas species.

To conclude, we believe that the optimized Arabidopsis–Xcc
pathosystem will be a powerful tool for postgenomic approaches
intended to investigate fundamental aspects of plant–pathogen
interactions.

ACKNOWLEDGEMENTS

We thank Steve Diggles, Phil J. Hill (University of Nottingham, UK)
and Michael K. Winson (University of Wales Aberystwyth, UK) for
providing the pUTmini-Tn5 luxCDABE plasmid and Nemo Peeters
for critical reading of this manuscript.

REFERENCES

Alvarez, A.M. (2000) Black rot of crucifers. In: Mechanisms of Resistance
to Plant Diseases (Slusarenko, A.J., Fraser, R.S.S. and van Loon, L.C., eds).
Dordrecht: Kluwer Academic Publishers, pp. 21–52.

Bretschneider, K.E., Gonella, M.P. and Robeson, D.J. (1989) A compar-
ative light and electron microscopical study of compatible and incompatible
interactions between Xanthomonas campestris pv. campestris and
cabbage (Brassica oleracea). Physiol. Mol. Plant Pathol, 34, 285–297.

Buell, C.R. (2002) Interactions between Xanthomonas Species and
Arabidopsis thaliana. In: The Arabidopsis Book (Somerville, C.R. and
Meyerowitz, E.M., eds). Rockville, MD: American Society of Plant
Biologists, pp. 1–11.

Godard, F., Lummerzheim, M., Saindrenan, P., Balague, C. and Roby, D.
(2000) hxc2, an Arabidopsis mutant with an altered hypersensitive response
to Xanthomonas campestris pv. campestris. Plant J. 24, 749–761.

Hugouvieux, V., Barber, C.E. and Daniels, M.J. (1998) Entry of Xan-
thomonas campestris pv. campestris into hydathodes of Arabidopsis
thaliana leaves: a system for studying early infection events in bacterial
pathogenesis. Mol. Plant–Microbe Interact. 11, 537–543.

Katagiri, F., Thilmony, R. and He, S.Y. (2002) The Arabidopsis thaliana–
Pseudomonas syringae interaction. In: The Arabidopsis Book (Somerville, C.R.

and Meyerowitz, E.M., eds). Rockville, MD: American Society of Plant
Biologists, 1–35.

Lacomme, C. and Roby, D. (1999) Identification of new early markers
of the hypersensitive response in Arabidopsis thaliana. FEBS Lett. 459,
149–153.

Lummerzheim, M., Kroj, T., Ferreira, M., Tronchet, M., Godard, F.,
Montagu, M.v. and Roby, D. (2004) An Arabidopsis mutant with altered
hypersensitive response to Xanthomonas campestris pv. campestris, hxc1,
displays a complex pathophenotype. Mol. Plant Pathol. 5, 453–464.

Lummerzheim, M., Oliveira, D.D., Castresana, C., Miguens, F.C., Louzada, E.,
Roby, D., Montagu, M.V. and Timmerman, B. (1993) Identification of
compatible and incompatible interactions between Arabidopsis thaliana
and Xanthomonas campestris pv. campestris and characterization of the
hypersensitive response. Mol. Plant–Microbe Interact. 6, 532–544.

Onsando, J.M. (1992) Black rot of crucifers. In: Plant Diseases of Interna-
tional Importance, Vol. II. Diseases of Vegetables and Oil Seed Crops
(Chaube, H.S., Kumar, J., Mukhopadhyay, A.N. and Singh, U.S., eds),
pp. 243–252. Englewood Cliffs, NJ: Prentice Hall.

Quirino, B.F. and Bent, A.F. (2003) Deciphering host resistance and
pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model.
Mol. Plant Pathol, 4, 517–530.

Shaw, J.J. and Kado, C.I. (1988) Whole plant wound inoculation for
consistent reproduction of black rot of crucifers. Phytopathology, 78,
981–986.

da Silva, A.C., Ferro, J.A., Reinach, F.C., Farah, C.S., Furlan, L.R.,
Quaggio, R.B., Monteiro-Vitorello, C.B., Van Sluys, M.A., Almeida,
N.F., Alves, L.M., do Amaral, A.M., Bertolini, M.C., Camargo, L.E.,
Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina,
L.P., Cicarelli, R.M., Coutinho, L.L., Cursino-Santos, J.R., El-Dorry, H.,
Faria, J.B., Ferreira, A.J., Ferreira, R.C., Ferro, M.I., Formighieri, E.F.,
Franco, M.C., Greggio, C.C., Gruber, A., Katsuyama, A.M., Kishi,
L.T., Leite, R.P., Lemos, E.G., Lemos, M.V., Locali, E.C., Machado, M.A.,
Madeira, A.M., Martinez-Rossi, N.M., Martins, E.C., Meidanis, J.,
Menck, C.F., Miyaki, C.Y., Moon, D.H., Moreira, L.M., Novo, M.T.,
Okura, V.K., Oliveira, M.C., Oliveira, V.R., Pereira, H.A., Rossi, A.,
Sena, J.A., Silva, C., de Souza, R.F., Spinola, L.A., Takita, M.A.,
Tamura, R.E., Teixeira, E.C., Tezza, R.I., Trindade dos Santos, M.,
Truffi, D., Tsai, S.M., White, F.F., Setubal, J.C. and Kitajima, J.P.
(2002) Comparison of the genomes of two Xanthomonas pathogens with
differing host specificities. Nature, 417, 459–463.

Simpson, R.B. and Johnson, L.J. (1990) Arabidopsis thaliana as a host for
Xanthomonas campestris pv. campestris. Mol. Plant–Microbe Interact. 3,
233–237.

Simpson, A.J., Reinach, F.C., Arruda, P., Abreu, F.A., Acencio, M.,
Alvarenga, R., Alves, L.M., Araya, J.E., Baia, G.S., Baptista, C.S.,
Barros, M.H., Bonaccorsi, E.D., Bordin, S., Bove, J.M., Briones, M.R.,
Bueno, M.R., Camargo, A.A., Camargo, L.E., Carraro, D.M.,
Carrer, H., Colauto, N.B., Colombo, C., Costa, F.F., Costa, M.C.,
Costa-Neto, C.M., Coutinho, L.L., Cristofani, M., Dias-Neto, E.,
Docena, C., El-Dorry, H., Facincani, A.P., Ferreira, A.J., Ferreira, V.C.,
Ferro, J.A., Fraga, J.S., Franca, S.C., Franco, M.C., Frohme, M.,
Furlan, L.R., Garnier, M., Goldman, G.H., Goldman, M.H., Gomes,
S.L., Gruber, A., Ho, P.L., Hoheisel, J.D., Junqueira, M.L., Kemper,
E.L., Kitajima, J.P., Krieger, J.E., Kuramae, E.E., Laigret, F., Lambais,
M.R., Leite, L.C., Lemos, E.G., Lemos, M.V., Lopes, S.A., Lopes, C.R.,
Machado, J.A., Machado, M.A., Madeira, A.M., Madeira, H.M.,
Marino, C.L., Marques, M.V., Martins, E.A., Martins, E.M., Matsukuma,
A.Y., Menck, C.F., Miracca, E.C., Miyaki, C.Y., Monteriro-Vitorello, C.B.,



Optimization of the Arabidopsis–Xcc pathosystem 333

© 2005 BLACKWELL  PUBL ISH ING LTD MOLECULAR PLANT PATHOLOGY (2005)  6 (3 ) , 327–333

Moon, D.H., Nagai, M.A., Nascimento, A.L., Netto, L.E., Nhani Jr.,
A., Nobrega, F.G., Nunes, L.R., Oliveira, M.A., de Oliveira, M.C., de
Oliveira, R.C., Palmieri, D.A., Paris, A., Peixoto, B.R., Pereira, G.A.,
Pereira Jr., H.A., Pesquero, J.B., Quaggio, R.B., Roberto, P.G.,
Rodrigues de V., M.R.A.J., de Rosa Jr., V.E., de Sa, R.G., Santelli,
R.V., Sawasaki, H.E., da Silva, A.C., da Silva, A.M., da Silva, F.R., da
Silva Jr., W.A., da Silveira, J.F., Silvestri, M.L., Siqueira, W.J., de
Souza, A.A., de Souza, A.P., Terenzi, M.F. Truffi, D., Tsai, S.M.,
Tsuhako, M.H., Vallada, H., Van Sluys, M.A., Verjovski-Almeida, S.,
Vettore, A.L., Zago, M.A., Zatz, M., Meidanis, J. and Setubal, J.C.
(2000) The genome sequence of the plant pathogen Xylella fastidiosa.
The Xylella fastidiosa Consortium of the Organization for Nucleotide
Sequencing and Analysis. Nature, 406, 151–157.

Slater, H., Alvarez-Morales, A., Barber, C.E., Daniels, M.J. and
Dow, J.M. (2000) A two-component system involving an HD-GYP
domain protein links cell-cell signalling to pathogenicity gene expression
in Xanthomonas campestris. Mol. Microbiol. 38, 986–1003.

Somerville, C.R. and Meyerowitz, E.M. (eds) (2004) The Arabidopsis
Book. Rockville, MD: American Society of Plant Biologists.

Tang, J.L., Liu, Y.N., Barber, C.E., Dow, J.M., Wootton, J.C. and
Daniels, M.J. (1991) Genetic and molecular analysis of a cluster of
rpf genes involved in positive regulation of synthesis of extracellular
enzymes and polysaccharide in Xanthomonas campestris pathovar
campestris. Mol. Gen. Genet. 226, 409–417.

Vicente, J.G., Conway, J., Roberts, S.J. and Taylor, J.D. (2001) Identifi-
cation and origin of Xanthomonas campestris pv. campestris races and
related pathovars. Phytopathology, 91, 492–499.

Vorholter, F.-J., Thias, T., Meyer, F., Bekel, T., Kaiser, O., Puhler, A. and
Niehaus, K. (2003) Comparison of two Xanthomonas campestris pathovar
campestris genomes revealed differences in their gene composition. J.
Biotechnol. 106, 193–202.

Williams, P.H. (1980) Black rot: a continuing threat to world crucifers. Plant
Dis. 64, 736–742.

Winson, M.K., Swift, S., Hill, P.J., Sims, C.M., Griesmayr, G., Bycroft, B.W.,
Williams, P. and Stewart, G.S.A.B. (1998) Engineering the luxCDABE
genes from Photorhabdus luminescens to provide a bioluminescent
reporter for constitutive and promoter probe plasmids and mini-Tn5
constructs. FEMS Microbiol. Lett. 163, 193–202.


