Ecological risk mapping of canine leishmaniasis in France

Chamaillé L, <u>Tran A</u>, Meunier A, Bourdoiseau G, Ready P & Dedet JP.

Canine leishmaniasis in southern France

- Leishmania infantum: a Trypanosomatid Protozoan
- Phlebotomine sandflies
- Mammalian host
 - Human (zoonotic visceral leishmaniasis)
 - Dog
- Endemic in Southern France
 - Phlebotomus perniciosus
 - Phlebotomus ariasi
- Increase of CanL prevalence over the last decade
- Influence of environmental factors?

Retrospective canine leishmaniasis database

- Confirmed autochthonous cases
- Between 1965 and 2007
- Data entered :
 - Source of information
 - Type of survey or case reporting
 - Method of diagnosis
 - Information about dog
 - Location

Objectives:

- Map the reported cases in France
- Produce an environment-based map of the areas at risk for CanL.

Results (1): Map of presence of CanL in France

Environmental variables

- Explanatory variables for CanL distribution:
 - Summer and winter precipitations
 - Summer and winter temperatures
 - Land use (type of forest)
 - Altitude levels
 - Human densities
 - Dog densities (source: EDEN)
- All variables integrated in a GIS:
 - same projection (Lambert conformal conic projection)
 - same geographical area (mask)

Spatial analysis: description of the environmental characteristics of the CanL locations

- Spatial units: regular grid with 5 x 5 km cells
- Principal Component Analysis (13)
 - Altitude
 - Temperatures (3)
 - Rainfall (3)
 - Forests (4)
 - Humans and dogs densities

- PCA Result : synthetic variables (PC) = Linear combination of the initial variables
- Hierarchical Ascendant classification :
 - Performed on the PCs
 - Grouping the cells with similar environmental characteristics
 - Obtaining the most homogeneous and the most distinctive classes

Results (2): Classification

Class 1 ~ P. ariasi

- Class 1
 - Positively associated with PC 1
 - Locations 200 1000 m altitude
 - Coldest winter temperatures and Highest precipitation
 - Important % broadleaf forest

Results (2): Classification

- Class 2
 - Close to mainland coast and Corsica
 - Warmer summers (average 26.1° C) and winters (average 3.4° C)
 - less precipitation (average 860 mm)

Ecological niche modelling: Mapping the areas more suitable for the presence of CanL

For each group identified by the HAC:

- Univariate screening analysis
- Ecological niche modelling
 - Maxent model (a general-purpose machine learning method)
 - Maximal entropy principle
 - The model estimates the probability distribution respecting a set of constraints based on the values of the environmental variables

The entropy of a probability distribution π is defined as

$$H(\hat{\pi}) = -\sum_{x \in X} \hat{\pi}(x) \ln \hat{\pi}(x)$$

X: finite set of pixels

Phillips et al. Ecological Modelling 2006, 190:231-259

Results (4): Risk map of CanL in Southern France

Discussion and perspectives

- First retrospective study of CanL in France
- Some biases could not be avoided
 - Presence only
 - Sampling effort
 - Location
- Two classes probably reflecting the niches of the two vectors
 - Entomological surveys are needed!
- Environmental risk map:
 - Formulating hypotheses about CanL
 - Tool for surveillance / studies

Thank you for your attention!

This work was funded by EU grant GOCE-2003-010284 EDEN

The authors thank

Yves Balard, Patrick Lami and Hugues Corbière for expert technical assistance,

Luc Bertolus for processing data in the retrospective database,

Robert Killick-Kendrick, Arezki Izri, Patrick Bourdeau and Mohamed Kasbari for fruitful discussions,

Guy Hendricks, Avia-Gis, for providing the dog density map

