Agritrop
Home

cDNA-AFLP-based genetical genomics in cotton fibers

Claverie Michel, Souquet Marlène, Jean Janine, Forestier-Chiron Nelly, Lepitre Vincent, Pré Martial, Jacobs John, Llewellyn Danny, Lacape Jean-Marc. 2012. cDNA-AFLP-based genetical genomics in cotton fibers. Theoretical and Applied Genetics, 124 (4) : pp. 665-683.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_563150.pdf

Télécharger (702kB)

Quartile : Outlier, Sujet : HORTICULTURE / Quartile : Q1, Sujet : AGRONOMY / Quartile : Q1, Sujet : PLANT SCIENCES / Quartile : Q2, Sujet : GENETICS & HEREDITY

Abstract : Genetical genomics, or genetic analysis applied to gene expression data, has not been widely used in plants. We used quantitative cDNA-AFLP to monitor the variation in the expression level of cotton fiber transcripts among a population of inter-specific Gossypium hirsutum 9 G. barbadense recombinant inbred lines (RILs). Two key fiber developmental stages, elongation (10 days post anthesis, dpa), and secondary cell wall thickening (22 dpa), were studied. Normalized intensity ratios of 3,263 and 1,201 transcript-derived fragments (TDFs) segregating over 88 RILs were analyzed for quantitative trait loci (QTL) mapping for the 10 and 22 dpa fibers, respectively. Two-thirds of all TDFs mapped between 1 and 6 eQTLs (LOD[3.5). Chromosome 21 had a higher density of eQTLs than other chromosomes in both data sets and, within chromosomes, hotspots of presumably trans-acting eQTLs were identified. The eQTL hotspots were compared to the location of phenotypic QTLs for fiber characteristics among the RILs, and several cases of co-localization were detected. Quantitative RT-PCR for 15 sequenced TDFs showed that 3 TDFs had at least one eQTL at a similar location to those identified by cDNA-AFLP, while 3 other TDFs mapped an eQTL at a similar location but with opposite additive effect. In conclusion, cDNA-AFLP proved to be a cost-effective and highly transferable platform for genome-wide and population-wide gene expression profiling. Because TDFs are anonymous, further validation and interpretation (in silico analysis, qPCR gene profiling) of the eQTL and eQTL hotspots will be facilitated by the increasing availability of cDNA and genomic sequence resources in cotton. (Résumé d'auteur)

Mots-clés Agrovoc : Gossypium barbadense, Gossypium hirsutum, Hybride, Marqueur génétique, Polymorphisme génétique, Coton, Fibre végétale, Expression des gènes

Mots-clés géographiques Agrovoc : France

Mots-clés complémentaires : Fibre de coton, AFLP

Classification Agris : F30 - Plant genetics and breeding

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Claverie Michel
  • Souquet Marlène
  • Jean Janine, CIRAD-PERSYST-UPR SCA (FRA)
  • Forestier-Chiron Nelly, CIRAD-PERSYST-UMR Qualisud (FRA)
  • Lepitre Vincent, CIRAD-BIOS-UMR PVBMT (REU)
  • Pré Martial, UM2 (FRA)
  • Jacobs John, Bayer (BEL)
  • Llewellyn Danny, CSIRO (AUS)
  • Lacape Jean-Marc, CIRAD-BIOS-UMR AGAP (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/563150/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-03-07 ]