Agritrop
Home

A criterion based on the mahalanobis distance for cluster analysis with subsampling

Picard Nicolas, Bar-Hen Avner. 2012. A criterion based on the mahalanobis distance for cluster analysis with subsampling. Journal of Classification, 9 (1) : pp. 23-49.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_563873.pdf

Télécharger (369kB)

Quartile : Q3, Sujet : MATHEMATICS, INTERDISCIPLINARY APPLICATIONS / Quartile : Q4, Sujet : PSYCHOLOGY, MATHEMATICAL

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Psychologie-éthologie-ergonomie

Abstract : A two-level data set consists of entities of a higher level (say populations), each one being composed of several units of the lower level (say individuals). Observations are made at the individual level, whereas population characteristics are aggregated from individual data. Cluster analysis with subsampling of populations is a cluster analysis based on individual data that aims at clustering populations rather than individuals. In this article, we extend existing optimality criteria for cluster analysis with subsampling of populations to deal with situations where population characteristics are not the mean of individual data. A new criterion that depends on the Mahalanobis distance is also defined. The criteria are compared using simulated examples and an ecological data set of tree species in a tropical rain forest. (Résumé d'auteur)

Mots-clés Agrovoc : Modèle mathématique, Échantillonnage, peuplement forestier, Classification, Espèce

Mots-clés géographiques Agrovoc : Guyane française

Classification Agris : U10 - Computer science, mathematics and statistics
K01 - Forestry - General aspects

Champ stratégique Cirad : Hors axes (2005-2013)

Auteurs et affiliations

  • Picard Nicolas, CIRAD-ES-UPR BSef (GAB)
  • Bar-Hen Avner, Université René Descartes (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/563873/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-02-23 ]