Epigenetic regulation of flower development in the oil palm

Alain RIVAL, Thierry BEULE, Frédérique RICHAUD, Pascal ILBERT, Estelle JALIGOT
CIRAD, UMR DIADE, Montpellier, France
Why studying the oil palm at all?

- Because it is the 1st world source of vegetable oil and consumption for food and energy can only rise with increasing population.
- Because its *mantled* floral phenotype provide an original model where agro-economical interests fuel the search for basic knowledge in a tropical perennial.
Characteristics of the *mantled* phenotype

- Somaclonal variation: arises from *in vitro* cloning
- Alteration of floral organs: poor oil accumulation, infertility, visible in adult trees only
- Highly heterogeneous: frequency, severity, genotype effect
- Unstable: spontaneous reversion
Dealing with *mantledness* from both ends of the cloning process

- Working on adult palms to understand the molecular origin of the floral phenotype
- Working on *in vitro* cultures to test potential markers for early detection
A few things we know about *mantled*

- No genetic/cytologic alteration
- Non-mendelian inheritance
- Hypomethylated genome
- Altered gene transcription
- Phenotype: stamen converted into carpels, reminiscent of B-class MADS-box gene mutants

-19.3% -7.4%
The hypothesis

- Epigenetic mechanisms regulating gene expression are perturbated by the cloning process (hormones, re-programming)
- Most of these alterations have no detectable impact on the phenotype and/or subside
- The pathway governing floral organ formation remains affected in the adult stage (sensitivity shared amongst Palms?)
The strategy

• *In vitro* material: investigating the genomic and epigenetic stability during the tissue culture process

• Adult (inflorescence) material: exploring the epigenetic regulation of flower development
The strategy

- *In vitro* material: investigating the genomic and epigenetic stability during the tissue culture process

 Follow-up on the phenotypic stability in the field

- Adult (inflorescence) material: exploring the epigenetic regulation of flower development
The strategy

• *In vitro* material: investigating the genomic and epigenetic stability during the tissue culture process

• Adult (inflorescence) material: exploring the epigenetic regulation of flower development

Tracing back the origin of the *mantled* phenotype
Investigating the stability of cell cultures

Seed-derived palm

Cloning 1

Normal regenerant

Mantled regenerant
Investigating the stability of cell cultures

Seed-derived palm

Cloning 1

Normal regenerant

Cloning 2

Normal cell lines

Cloning 2

Mantled regenerant

Mantled cell lines

Propagation over 1 year, periodical samplings for DNA/RNA extractions
Exploring the epigenetic regulation of flower development

Floral MADS-box genes

Chanderbali et al., 2010
Exploring the epigenetic regulation of flower development

Polycomb-group genes

Floral MADS-box genes

Transposable Elements

Transcription factors

Chanderbali et al., 2010
Exploring the epigenetic regulation of flower development

Polycomb-group genes

Floral MADS-box genes

Different epigenetic marks in mantled flowers?
 Bisulfite, ChIP

Different mRNA/sRNA levels in mantled flowers?
 RNAseq, Q-PCR

Transposable Elements

Transcription factors

Chanderbali et al., 2010
« Things written in pen you can’t change. That’s DNA. But things written in pencil you can. That’s epigenetics »

Danielle Reed, geneticist
National Geographic, January 2012 issue

Thank you for your attention