

of
tree crops
and
agroforestry systems

((U&)U()

Camille LELONG, Guerric LE MAIRE et al.

From monospecific tree crops

Eucalyptus plantations (Brazil)

Worldview -0.5 m

with various structures...

...to diverse agroforestry systems

Association of trees of different species and trees with other crops

in a large range of complexity!

Plot structure characterization

The intraplot structure analysis allows:

- identification and segmentation of tree plots
- classification of plantation types depending on their complexity level
- identification and inventory of the tree diversity
- biomass estimation, production evaluation
- characterization of the cropping system
- characterization of the biophysical status of the crop

In the aim of:

- 1. understanding the crop functionning
- 2. evaluating its agronomical potentials

♥VHSR remote sensing gives some tools to extract different indicators characterizing the intraplot structure of tree crops and agroforestry systems

Structure indicators estimation

Tree-crops accurate structure-based classification

Different types of orchards in the South of France

<u>100m</u>

Tree-crops accurate structure-based classification

Intra-plot shading distribution

Method: multiscale textural analysis of panchro image

Crown delimitation

Eucalyptus plantations at early growth stages in Brazil

Method of detection: marked point processes (developed by INRIA)

a tree = a position (x,y) + a radius (r)

Crown delimitation

Eucalyptus plantations at early growth stages in Brazil

Method of detection: marked point processes (developed by INRIA)

a tree = a position (x,y) + a radius (r)

Results: comparison to field-measured positions and radius:

- > good tree presence/absence detection: 93% of good detection
 - good position accuracy: ~70 cm precision
 - high uncertainty on radius estimations: ~70 cm (i.e. 30%)

LAI at the tree scale

Oil palm estate in Indonesia

Oil palm trees (Quickbird)

Calibration of LAI-NDVI relationship based on the field LAI measurements at tree scale

LAI of agroforestry systems Coffee grove with shading trees in Costa-Rica

①LAI Field measurements (LAI-2000 transects)

©Calibration of LAI-NDVI_{HR} relationship based on the field measurements of transect values and NDVI distribution

$$LAI_{HR} = \max(0; \frac{-1.557}{\ln(NDVI_{HR})} - 2.778)$$

Worldview2-2m

 $\label{eq:application}$ Application of the LAI-NDVI_{HR} relationship to the WV2 MS image

-resolution LAI map (RMSE=0.44)

Perspectives

- Integrate the maximum of information that could be included in the data, like using simultaneously radiometric and textural attributes.
- Test new directions for improving results and reach new indicators/products (eg. SVM, waveletts, ???)
- Give more generic power to the methods and tools
- Enlarge the range of applications to more complex agroforestry structures
- Integrate the products in functionning, understanding and characterization models of these systems, especially in the aim of evalutating their diverse products and services.

Contributors

These studies were supported by: CIRAD, CNES – ORFEO Preparatory Program, EU, PNTS, IGN, PT-SMART, CATIE

and achieved thanks to:

Eucalyptus in Brazil

ZHOU Jia², PROISY Christophe³, DESCOMBES Xavier⁴, ZERUBIA Josiane⁴, NOUVELLON Yann^{1,5}, STAPE Jose-Luiz⁶, COUTERON Pierre³, LE MAIRE Guerric¹

- 1- CIRAD, UMR Eco&Sols, Montpellier, France
- 2- UM2, UMR AMAP, Montpellier, France
- 3- IRD, UMR AMP, Montpellier, France
- 4- INRIA, Ariana/I3S, Sophia-Antipolis, France
- 5- Atmopheric Sciences, São Paulo, Brazil
- 6- North Carolina State University, USA

Coffee in Costa Rica

TAUGOURDEAU Simon¹, ROUPSARD Olivier^{1,2}, AVELINO Jacques^{1,2}, GOMEZ-DELGADO Federico^{1,3}, JONES Jeffrey ², VAAST Philippe¹, CHARBONNIER Fabien¹. LE MAIRE Guerric^{1,4}

- 1- CIRAD, UMR Eco&Sols, Montpellier, France
- 2- CATIE, Turrialba, Costa Rica
- 3- ICE, Costa Rica
- 4- CIRAD, UMR TETIS, Montpellier, France

Oil-palm in Indonesia

LELONG Camille¹, ROUSSEL Fanny^{1,2}, ARTANTO Doni³, SITORUS Nurul³, PRABOWO Anang³

- 1- CIRAD, UMR TETIS, Montpellier, France
- 2- I-Mage Consult, Namur, Belgique
- 3- PT-SMART, Padang Halaban Estate, Indonesia

Coffee in Uganda

LELONG Camille, THONG-CHANE Audrey

1- CIRAD, UMR TETIS, Montpellier, France

Fruits in Gard/France

MOUGEL Baptiste^{1,2}, RECHAL David^{1,3}, LELONG Camille¹

- 1- CIRAD, UMR TETIS, Montpellier, France
- 2- Quiddem, Montpellier, France
- 3- IRAD, UMR Espace-Dev, Montpellier, France
- 4- CIRAD, UMR TETIS, Montpellier, France

