Agritrop
Home

Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure

Vincent Grégoire, Sabatier Daniel, Blanc Lilian, Chave Jérôme, Weissenbacher Emilien, Pélissier Raphaël, Fonty E., Molino Jean-François, Couteron Pierre. 2012. Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure. Remote Sensing of Environment, 125 : pp. 23-33.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.
document_564968.pdf

Télécharger (628kB)

Quartile : Outlier, Sujet : REMOTE SENSING / Quartile : Q1, Sujet : ENVIRONMENTAL SCIENCES / Quartile : Q1, Sujet : IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY

Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Géographie-Aménagement-Urbanisme-Architecture

Abstract : We predict stand basal area (BA) from small footprint LiDAR data in 129 one-ha tropical forest plots across four sites in French Guiana and encompassing a great diversity of forest structures resulting from natural (soil and geological substrate) and anthropogenic effects (unlogged and logged forests). We use predictors extracted from the Canopy Height Model to compare models of varying complexity: single or multiple regressions and nested models that predict BA by independent estimates of stem density and quadratic mean diameter. Direct multiple regression was the most accurate, giving a 9.6% Root Mean Squared Error of Prediction (RMSEP). The magnitude of the various errors introduced during the data collection stage is evaluated and their contribution to MSEP is analyzed. It was found that these errors accounted for less than 10% of model MSEP, suggesting that there is considerable scope for model improvement. Although site-specific models showed lower MSEP than global models, stratification by site may not be the optimal solution. The key to future improvement would appear to lie in a stratification that captures variations in relations between LiDAR and forest structure. (Résumé d'auteur)

Mots-clés Agrovoc : Forêt tropicale humide, peuplement forestier, Structure du peuplement, Télédétection, Laser, Dynamique des populations, Croissance, modèle de croissance forestière, Abattage d'arbres, Facteur édaphique, Forêt

Mots-clés géographiques Agrovoc : Guyane française

Mots-clés complémentaires : Surface terrière

Classification Agris : U10 - Computer science, mathematics and statistics
K01 - Forestry - General aspects

Champ stratégique Cirad : Axe 6 (2005-2013) - Agriculture, environnement, nature et sociétés

Auteurs et affiliations

  • Vincent Grégoire, IRD (FRA)
  • Sabatier Daniel, IRD (FRA)
  • Blanc Lilian, CIRAD-ES-UPR BSef (BRA)
  • Chave Jérôme, CNRS (FRA)
  • Weissenbacher Emilien
  • Pélissier Raphaël, IRD (FRA)
  • Fonty E., ONF (GUF)
  • Molino Jean-François, IRD (FRA)
  • Couteron Pierre, IRD (FRA)

Source : Cirad - Agritrop (https://agritrop.cirad.fr/564968/)

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-02-24 ]