Agritrop
Accueil

Asexual reproduction induces a rapid and permanent loss of sexual reproduction capacity in the rice fungal pathogen Magnaporthe oryzae : Results of in vitro experimental evolution assays

Saleh Dounia, Milazzo Joëlle, Adreit Henri, Tharreau Didier, Fournier Elisabeth. 2012. Asexual reproduction induces a rapid and permanent loss of sexual reproduction capacity in the rice fungal pathogen Magnaporthe oryzae : Results of in vitro experimental evolution assays. BMC Evolutionary Biology, 12 (42), 16 p.

Article de revue ; Article de revue à facteur d'impact Revue en libre accès total
[img] Version publiée - Anglais
Utilisation soumise à autorisation de l'auteur ou du Cirad.
document_564969.pdf

Télécharger (703kB)

Quartile : Q2, Sujet : GENETICS & HEREDITY / Quartile : Q2, Sujet : EVOLUTIONARY BIOLOGY

Résumé : Background: Sexual reproduction is common in eukaryotic microorganisms, with few species reproducing exclusively asexually. However, in some organisms, such as fungi, asexual reproduction alternates with episodic sexual reproduction events. Fungi are thus appropriate organisms for studies of the reasons for the selection of sexuality or clonality and of the mechanisms underlying this selection. Magnaporthe oryzae, an Ascomycete causing blast disease on rice, reproduces mostly asexually in natura. Sexual reproduction is possible in vitro and requires (i) two strains of opposite mating types including (ii) at least one female-fertile strain (i.e. a strain able to produce perithecia, the female organs in which meiosis occurs). Female-fertile strains are found only in limited areas of Asia, in which evidence for contemporary recombination has recently been obtained. We induced the forced evolution of four Chinese female-fertile strains in vitro by the weekly transfer of asexual spores (conidia) between Petri dishes. We aimed to determine whether female fertility was rapidly lost in the absence of sexual reproduction and whether this loss was controlled genetically or epigenetically. Results: All the strains became female-sterile after 10 to 19 rounds of selection under asexual conditions. As no single-spore isolation was carried out, the observed decrease in the production of perithecia reflected the emergence and the invasion of female-sterile mutants. The female-sterile phenotype segregated in the offspring of crosses between female-sterile evolved strains and female-fertile wild-type strains. This segregation was maintained in the second generation in backcrosses. Female-sterile evolved strains were subjected to several stresses, but none induced the restoration of female fertility. This loss of fertility was therefore probably due to genetic rather than epigenetic mechanisms. In competition experiments, female-sterile mutants produced similar numbers of viable conidia to wild-type strains, but released them more efficiently. This advantage may account for the invasion of our populations by female-sterile mutants. Conclusions: We show for the first time that, in the absence of sexual reproduction, female-sterile mutants of M. oryzae rice strains can arise and increase in abundance in asexual generations. This change in phenotype was frequent and probably caused by mutation. These results suggest that female fertility may have been lost rapidly during the dispersion of the fungus from Asia to the rest of the world.

Mots-clés Agrovoc : Magnaporthe grisea, génétique des populations, reproduction asexuée, reproduction sexuée, mutation, fertilité, femelle, infertilité femelle, physiologie de la reproduction, ségrégation, héritabilité, Oryza sativa, expérimentation in vitro

Mots-clés complémentaires : Magnaporthe oryzae

Classification Agris : H20 - Maladies des plantes

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Saleh Dounia, INRA (FRA)
  • Milazzo Joëlle, CIRAD-BIOS-UMR BGPI (FRA)
  • Adreit Henri, CIRAD-BIOS-UMR BGPI (FRA)
  • Tharreau Didier, CIRAD-BIOS-UMR BGPI (FRA) ORCID: 0000-0003-3961-6120
  • Fournier Elisabeth, INRA (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/564969/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-07 ]